# B.Sc. Computer Science Programme Code - UCS (Aided & SF)

#### Programme outcome (PO) Bachelor of Science (B.Sc.)

#### **PO1** Scientific Knowledge and Critical Thinking:

Apply the knowledge of Life Science, Physical and Chemical Science, Mathematics, statistics, Computer science and humanities for the arrangement of solutions to the problems that come across in our day-to-day life/activities

#### PO2 Problem Solving:

Identify and analyse the problem and formulate solutions for problems using the principles of mathematics, natural sciences with appropriate consideration for the public health, safety and environmental considerations.

#### PO3 Communication and Computer Literacy:

Communicate the fundamental and advanced concepts of their discipline in written and oral form. Able to make appropriate and effective use of information and information technology relevant to their technique.

#### PO4 Life-Ling Learning:

Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

#### PO5 Ethical, Social and Professional Understanding:

Commitment to principles, codes of conduct and social responsibility in order to behave consistently with personal respect. Acquire the responsibility to contribute for the personal development and for the development of the community. Respect the ethical values, social responsibilities and diversity.

#### PO6 Innovative, Leadership and Entrepreneur Skill Development:

Function as an individual and as a member or leader in diverse teams and in multidisciplinary settings. Become an entrepreneur by acquiring technical, communicative, problem solving and intellectual skills.







# THIAGARAJAR COLLEGE, MADURAI – 9 (Re-Accredited with "A++" Grade by NAAC) DEPARTMENT OF COMPUTER SCIENCE

(For those joined B.Sc. Computer Science on or after June 2020)

|                    | V SEMESTER |                                 |            |      |                |     |       |     |  |  |  |
|--------------------|------------|---------------------------------|------------|------|----------------|-----|-------|-----|--|--|--|
| Course             | Code No.   | Title of the paper              | Hrs/<br>Wk | Crd. | Crd. Total Hrs |     | Marks |     |  |  |  |
|                    | YYK        |                                 | 1115       | CIA  | SE             | TOT |       |     |  |  |  |
| Core 10            | UCS20C51   | Automata Theory                 | 5          | 4    | 75             | 25  | 75    | 100 |  |  |  |
| Core 11            | UCS20C52   | Software<br>Engineering         | 5          | 4    | 75             | 25  | 75    | 100 |  |  |  |
| Core 12            | UCS20C53   | Python<br>Programming           | 4          | 4    | 60             | 25  | 75    | 100 |  |  |  |
| Core 13            | UCS20C54   | Cloud Computing                 | 5          | 4    | 75             | 25  | 75    | 100 |  |  |  |
| Core<br>Elective-I | UCS20CE51  | Core Elective – I               | 5          | 5    | 75             | 25  | 75    | 100 |  |  |  |
| SEC – I            | UCS20SE51  | Skill Enhancement<br>Course – I | 2          | 2    | 30             | 15  | 35    | 50  |  |  |  |
| Core Lab7          | UCS20CL51  | Python<br>Programming Lab       | 4          | 2    | 60             | 40  | 60    | 100 |  |  |  |
| Total              |            |                                 | 30         | 25   |                |     |       | 650 |  |  |  |
|                    | UCS20IN    | Internship                      |            | 2    |                | 15  | 35    | 50  |  |  |  |

| VI SEMESTER         |           |                                  |      |      |       |     |    |      |  |
|---------------------|-----------|----------------------------------|------|------|-------|-----|----|------|--|
| Course              | Code No.  | Title of the paper               | Hrs/ | Crd. | Total |     | M  | arks |  |
|                     |           |                                  | wk   |      | Hrs   | CIA | SE | TOT  |  |
| Core 14             | UCS20C61  | Computer Networks                | 5    | 4    | 75    | 25  | 75 | 100  |  |
| Core 15             | UCS20C62  | Open Source<br>Technology        | 4    | 4    | 60    | 25  | 75 | 100  |  |
| Core 16             | UCS20C63  | Operating Systems                | 5    | 4    | 75    | 25  | 75 | 100  |  |
| Core<br>Elective-II | UCS20CE61 | Core Elective- II                | 5    | 5    | 75    | 25  | 75 | 100  |  |
| SEC II              | UCS20SE61 | Skill Enhancement<br>Course – II | 2    | 2    | 30    | 15  | 35 | 50   |  |
| Core Lab8           | UCS20CL61 | Open Source<br>Technology Lab    | 4    | 2    | 60    | 40  | 60 | 100  |  |
| Project             | UCS20PJ61 | Project & Viva Voce              | 5    | 4    | 75    | 25  | 75 | 100  |  |
| Part V              |           | NCC/NSS/PE                       |      | 1    |       |     |    |      |  |
| Total               |           |                                  | 30   | 26   |       |     |    | 650  |  |

#### **List of Electives**

#### **Core Electives**

- o Data Mining and Warehousing
- o Multimedia Technology
- Artificial Intelligence
- o E-Commerce Technologies
- Fuzzy Logic

#### **Skill Enhancement Courses**

- Office Automation
- Android Programming
- o PHP Programming
- Dot Net Programming
- o jQuery Scripting
- o XML Programming

#### THIAGARAJAR COLLEGE, MADURAI - 9. (Re-Accredited with "A++" Grade by NAAC) DEPARTMENT OF COMPUTER SCIENCE

(For those joined B.Sc. Computer Science on or after June 2020)

**Programme Code: UCS** 

| Course code | Course Title    | Category | L | Т | P | Credit |
|-------------|-----------------|----------|---|---|---|--------|
| UCS20C51    | Automata Theory | Core-10  | 4 | 1 | - | 4      |

L-Lecture T- Tutorial P-Practical

| Year | Semester | Internal | External | Total |
|------|----------|----------|----------|-------|
| III  | V        | 25       | 75       | 100   |

#### Preamble

This course is designed to understand the fundamentals of set theory, relations, functions, Graphs and the basic principles of finite automata.

#### **Course Outcomes**

On the completion of the course the student will be able to

| #   | Course Outcome                                                                                    | Expected<br>Proficiency<br>(%) | Expected<br>Attainment<br>(%) |
|-----|---------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------|
| CO1 | Describe the basic principles of finite automata.                                                 | 80                             | 75                            |
|     | Elaborate the concept of Deterministic finite automata and Non-<br>Deterministic finite automata. | 76                             | 72                            |
| CO3 | Solve some simple problems in automata theory.                                                    | 70                             | 68                            |
| CO4 | Explain the concept of Parse tree.                                                                | 72                             | 70                            |
| CO5 | Gain knowledge about context free grammar and context free language.                              | 75                             | 73                            |

#### **Mapping of COs with PSOs**

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----|------|------|------|------|------|
| CO1 | S    | M    | M    | S    | L    |
| CO2 | S    | S    | M    | M    | L    |
| CO3 | M    | S    | S    | S    | M    |
| CO4 | L    | M    | L    | M    | M    |
| CO5 | M    | L    | L    | S    | S    |

**S-STRONG** 

**M-MEDIUM** 

L-LOW

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | M   | M   | S   | L   | M   | M   |
| CO2 | S   | S   | S   | M   | M   | S   |
| CO3 | S   | S   | S   | M   | S   | M   |
| CO4 | M   | M   | M   | S   | L   | L   |
| CO5 | M   | M   | M   | M   | L   | S   |

#### Blooms taxonomy

|               | (     | CA     | End of   |
|---------------|-------|--------|----------|
|               | First | Second | Semester |
|               | 10.01 | 40.54  | 1001     |
| Knowledge-K1  | 40%   | 40%    | 40%      |
| Understand-K2 | 40%   | 40%    | 40%      |
| Apply-K3      | 20%   | 20%    | 20%      |

#### Content

UNIT I (15 Hours)

**Finite Automata:** Finite State Machines and its Model – Deterministic Finite Automata – Simplified Notation – FA with and without Epsilon Transitions – Language of Deterministic Finite Automata – Acceptability of a String by a DFA – Processing of Strings by DFA –Non deterministic Finite Automata – Language of NFA – Equivalence between DFA and NFA

UNIT II (15 Hours)

**Finite Automata:** NFA with and without Epsilon transitions – Two way finite automata –FA with output: Moore and Mealy machines – From finite automata to Moore machine – Interconversion between the machines – Equivalence between Moore and Mealy machines – Minimization of FA – Properties of transition function – Extending Transition function to strings– Applications of Finite automata –Limitations of finitestate machines

UNIT III (15 Hours)

**Formal Languages:** Theory of formal languages – Kleene and Positive closure – Defining languages –Recursive definition of languages -Arithmetic expressions – Grammars – Classification of Grammars and languages – Languages and their relations – Operations on languages – Chomsky Hierarchy

UNIT IV (15 Hours)

**Regular Language and regular Grammar:** Regular language – Regular expressions – Operators of regular expressions – Identity rules – Algebraic laws for RE – Finite automata and regular expressions– Equivalence of two regular expressions.

UNIT V (15 Hours)

Context free grammar and context free language: Definition of context free grammar – Context free language – Deterministic context free language – Deterministic context free language (DCFL) – Derivations – Parse trees – From inference to tree- Derivation tree and new notation of arithmetic expressions – sentential forms – Rightmost and leftmost derivation of strings – Ambiguity in Grammar and language.

#### Text Book

Rajendra Kumar, "Theory of Automata, Languages and Computation", 2010, Tata McGraw Hill Educations Private Limited, New Delhi

#### Chapters

Unit –I : Chapter 2 -2.1 – 2.10 Unit–II : Chapter 2 - 2.11 – 2.21

Unit–III : Chapter 3-3.1-3.10

Unit –IV : Chapter 4 - 4.1 - 4.7

Unit-V : Chapter 6 - 6.1 - 6.10

#### **Reference Books:**

- 1. John E.Hopcroft Jeffrey D.Ullman, 2002, **Introduction to Automata theory, Languages and Computation**, Narosa Publishing house, New Delhi.
- 2. Peter Linz, **An Introduction to Formal languages and automata**, 2011, Narosa Publishing House, NewDelhi.
- 3. Dr. M.K. Venkatraman, Dr. N. Sridharan, N.Chandrasekaran, 2009, **Discrete Mathematics**, The National publishing company.

#### Web Resources:

https://mcdtu.files.wordpress.com/2017/03/introduction-to-automatatheory.pdf https://www.tutorialspoint.com/automata\_theory/

#### **Course Designers:**

- 1. Dr.B.Arivazhagan
- 2. Mrs S.Karpagam
- 3. Mrs K.Suriya Prabha



# THIAGARAJAR COLLEGE, MADURAI - 9. (Re-Accredited with "A++" Grade by NAAC) DEPARTMENT OF COMPUTER SCIENCE

(For those joined B.Sc. Computer Science on or after June 2020)

**Programme Code: UCS** 

| Course code | Course Title            | Category | L | T | P | Credit |
|-------------|-------------------------|----------|---|---|---|--------|
| UCS20C52    | Software<br>Engineering | Core 11  | 4 | 1 | - | 4      |

L – Lecture T – Tutorial P – Practical

| Year | Semester | Internal | External | Total |
|------|----------|----------|----------|-------|
| III  | V        | 25       | 75       | 100   |

#### **Preamble**

To introduce the methodologies involved in the development and maintenance of software (i.e) over its entire life cycle.

#### **Course Outcomes**

On the completion of the course the student will be able to

| #   | Course Outcome                                                                                                            | Expected Proficiency | Expected<br>Attainment |
|-----|---------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------|
| CO1 | To be aware of different software life cycle models. To know the requirement dictation process.                           | 60%                  | 70%                    |
| CO2 | To analyze the design modelling and software requirements specification.                                                  | 60%                  | 70%                    |
| CO3 | To implement various testing strategies and verification, validation techniques.                                          | 60%                  | 70%                    |
| CO4 | To know the metrics of software quality, process and project metrics and analyze it.                                      | 60%                  | 70%                    |
| CO5 | To demonstrate software project planning, project management, project planning models and the risk management strategies. | 60%                  | 70%                    |

#### **Mapping of COs with PSOs**

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----|------|------|------|------|------|
| CO1 | S    | S    | L    | M    | L    |
| CO2 | M    | M    | M    | S    | L    |
| CO3 | S    | M    | M    | L    | M    |
| CO4 | M    | S    | S    | L    | M    |
| CO5 | S    | L    | L    | S    | S    |

**S-STRONG** 

**M-MEDIUM** 

L-LOW

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | S   | M   | S   | M   | S   | M   |
| CO2 | M   | M   | M   | S   | M   | M   |
| CO3 | S   | M   | M   | S   | M   | M   |
| CO4 | M   | S   | S   | M   | M   | L   |
| CO5 | M   | S   | M   | M   | S   | L   |

S-STRONG M-MEDIUM L-LOW

#### **Blooms taxonomy**

|               |       | CA     | End of   |
|---------------|-------|--------|----------|
|               | First | Second | Semester |
| Knowledge-K1  | 40%   | 40%    | 40%      |
| Understand-K2 | 40%   | 40%    | 40%      |
| Apply-K3      | 20%   | 20%    | 20%      |

#### **Content**

UNIT 1: 15 Hours

Nature of Software - The Software Process - Software Engineering Practice - Software Development Myths - Generic Process Model - Framework Activity- Process Patterns - Prescriptive Process Models - Agile Process Models.

UNIT II: 15 Hours

Software Engineering Knowledge - Core Principles - Principles for Framework Activity - Requirements Engineering - Establishing the Groundwork - Eliciting Requirements - Developing Use Cases - Requirement Analysis - Scenario Based Modeling - UML Model - Design Process - Design Concepts - Design Model.

UNIT III: 15 Hours

Software Testing Strategies: A Strategic Approach to Software Testing- Test Strategies for Conventional Software - Validation Testing- System Testing - Testing Conventional Applications: Software Testing Fundamentals- White Box Testing- Basis Path Testing-Control Structure Testing - Black Box Testing - Product Metrics: Framework for Product Metrics-Metrics for Requirement Model.

UNIT IV: 15 Hours

Project Management Concepts: Management Spectrum – People – Product – Process – Project - W5HH Principle - Process and Project Metrics: Metrics in Process and Project Domains - Software Measurement - Metrics for Software Quality - Integrating Metrics with Software Process.

UNIT V: 15 Hours

Estimation for Software Projects: Observations on Estimations - Project Planning Process - Scope and Feasibility - Resources - Software Project Estimation - Decomposition Techniques Empirical Estimation Models - Project Scheduling - Defining a Task Set for Software Project - Risk Management: Software Risks - Risk Identification - Risk Projection - Risk Refinement - Risk Mitigation, Monitoring and Management.

#### **Text Book**

Roger S.Pressman, Bruce R.Maxim, 2015, Software Engineering- A Practitioner's Approach, 8th edition, McGraw Hill Education.

#### **Chapters**

UNIT I : 1.1, 2.2 to 2.4, 3.1, 3.2, 3.4, 4.1, 5.3, 5.5 UNIT II : 7.1 to 7.3, 8.1 to 8.4, 9.1 to 9.3, 12.2 to 12.4

UNIT III : 22.1, 22.3, 22.7, 22.8, 23.1, 23.3, 23.4 – 23.6, 30.1, 30.2

UNIT IV : 31.1 to 31.6, 32.1 to 32.4

UNIT V : 33.1 to 33.7, 34.2, 34.3, 35.2 to 35.6

#### References

- 1. Ian Sommerville, 2000, Software Engineering, 6<sup>th</sup> edition, Pearson education Asia.
- 2. Pankaj Jalote, 1997, An Integrated Approach to Software Engineering, Springer Verlag.
- 3. James F Peters and Witold Pedryez, 2000, "Software Engineering An Engineering Approach", John Wiley and Sons, New Delhi.
- 4. Ali Behforooz and Frederick J Hudson,1996, "Software Engineering Fundamentals", OxfordUniversity Press, New Delhi.

#### **Web Resources**

https://www.ece.rutgers.edu/~marsic/books/SE/links/ https://unimelb.libguides.com/comsci\_softeng\_infotech https://library.iitbbs.ac.in/open-access-e-resources.php

#### **Course Designers**

Dr. N. Gnanasankaran Mrs.K. Sharmila



#### THIAGARAJAR COLLEGE, MADURAI – 9

## (Re-Accredited with "A++" Grade by NAAC) DEPARTMENT OF COMPUTER SCIENCE

(For those joined B.Sc. Computer Science on or after June 2020)

**Programme Code: UCS** 

| Course code | Course Title       | Category | L | T | P | Credit |
|-------------|--------------------|----------|---|---|---|--------|
| UCS20C53    | Python Programming | Core 12  | 4 | - | - | 4      |

L – Lecture

T – Tutorial

P – Practical

| Year | Semester | Internal | External | Total |
|------|----------|----------|----------|-------|
| III  | V        | 25       | 75       | 100   |

#### **Preamble**

This course is designed to learn basic concepts of python programming and also dealt with oops concepts, Database Connectivity and Data Science.

#### **Course Outcomes**

On the completion of the course the student will be able to

| #   | Course Outcome                                             | Expected<br>Proficiency | Expected<br>Attainment |
|-----|------------------------------------------------------------|-------------------------|------------------------|
| CO1 | Realize the basic concepts of Python.                      | 60%                     | 70%                    |
| COI | Realize the basic concepts of 1 ython.                     | 0070                    | 7070                   |
| CO2 | Implement application using list, tuples, and dictionaries |                         |                        |
|     | functions and learn to build user defined functions in     | 60%                     | 70%                    |
|     | python.                                                    |                         |                        |
| CO3 | Learn the Concept of Exception, Classes and Objects        | 60%                     | 70%                    |
| CO4 | Realize Inheritance and Polymorphism concept. Develop      | 60%                     | 70%                    |
|     | GUI based applications                                     |                         |                        |
| CO5 | Learn how to connect python with MySQL database and        | 60%                     | 70%                    |
|     | implement data science using python                        |                         |                        |

#### **Mapping of COs with PSOs**

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----|------|------|------|------|------|
| CO1 | L    | M    | L    | -    | -    |
| CO2 | L    | S    | M    | M    | -    |
| CO3 | L    | S    | S    | M    | -    |
| CO4 | -    | S    | S    | S    | L    |
| CO5 | M    | S    | S    | S    | M    |

L- LOW M-MEDIUM

**S-STRONG** 

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | L   | M   | M   | L   | -   | -   |
| CO2 | M   | S   | M   | L   | -   | -   |
| CO3 | M   | S   | S   | M   | -   | -   |
| CO4 | M   | S   | S   | S   | -   | L   |
| CO5 | M   | S   | S   | S   | -   | M   |

L- LOW M-MEDIUM S-STRONG

#### **Blooms taxonomy**

|               | CA    |        | End of Semester |
|---------------|-------|--------|-----------------|
|               | First | Second |                 |
| Knowledge-K1  | 20    | 20     | 44              |
| Understand-K2 | 21    | 21     | 44              |
| Apply-K3      | 11    | 11     | 22              |
| Total Marks   | 52    | 52     | 110             |

#### **Content**

Unit-I:

#### **Introduction to Python:**

Python-Features of Python- Execution of a Python Program- Viewing the Byte Code- Python Virtual Machine (PVM) – Memory Management in Python.

**Data Types in Python:** Numeric-Boolean-Sequences in python -Sets-Identifiers and Reserved words.

**Operators in Python:** Membership and Identity Operators.

**Input and Output:** Input Statements- Output Statements.

**Control Statements:** The if statements- The if...else statements- The if..elif statements – The while Loop- The for Loop- Nested Loops- break, continue and pass statements.

Unit-II: 10 Hours

Lists, Tuples - Dictionaries.

**Functions:** Defining a function – Calling a function – Returning Results from a function – Returning multiple values from a function – Pass by Object Reference – Recursive function- Anonymous or Lambdas.

Unit-III: 10 Hours

**Exceptions:** Errors in Python programs – Exceptions - Exception Handling – Types of Exceptions – The Except Block – User Defined Exceptions.

**Classes and Objects:** Creating a class – The self-variable – Constructors – Types of Methods – Inner Classes.

Unit-IV:

**Inheritance and Polymorphism:** The super() method – Types of Inheritance – Polymorphism – Operator overloading – Method Overloading – Method Overriding.

**Graphical User Interface using Tkinter:** 

GUI in python-The Root Window-Fonts and Colors-Working with Containers-Canvas-Frame-Widgets-Button Widget-Arranging Widgets in the Frame-Label Widget-Message Widget-Text Widget Scrollbar Widget-Check button Widget-Radio button Widget-Entry Widget-Spin box Widget-List box Widget-Menu Widget-creating Table.

Unit-V: 14 Hours

#### **Python's Database Connectivity**

DBMS- Advantages of a DBMS over Files-Types of Databases Used with Python- Installing of MySQLdb Module- Verifying the MySQLdb interface installation- Working with MySQL Database-Using MySQL from Python- Retrieving All Rows from a table- Insert, Delete, Update in a table-Creating Databases tables through Python.

#### **Data Science using Python**

Data Frame- Creating Data Frame from an Excel Spreadsheet, .csv files- Data Visualization- Bar Graph- Creating a Pie Chart- Creating Line Graph.

#### Text Book

1. Title: Core Python Programming Author: Dr. R.Nageswara Rao Publisher: Dreamtech Press

Edition: second

#### Chapters

Unit-II : Chapter 1,3,4,5,6 (Relevant Topics Only)
Unit-II : Chapter 10,11,19 (Relevant Topics Only)
Unit-III : Chapter 16,13 (Relevant Topics Only)

Unit-IV: Chapter 14,22

Unit-V : Chapter 24,25 (Relevant Topics Only)

#### **References**

- 1. E. Balagurusamy, "Problem Solving and Python Programming" Mc Graw Hill Education 2018
- 2. Allen B. Downey, "Think Python: How to Think Like a Computer Scientist",1st Edition 2012, O'Reilly.
- 3. Jeff McNeil, "Python 2.6 Text Processing: Beginners Guide", 2010, Packet Publications
- 4. Mark Pilgrim,"Dive Into Python", 2nd edition 2009, Apress
- 5. Chun, J Wesley, Core Python Programming, 2nd Edition, Pearson, reprint 2010.

#### **Web Resources**

https://www.learnpython.org/

https://www.tutorialspoint.com/python/

https://www.programiz.com/python-programming/tutorial

#### **Course Designer**

Mrs.SM.Valli Mr.R.Chandrasekar



#### THIAGARAJAR COLLEGE, MADURAI - 9.

### (Re-Accredited with "A++" Grade by NAAC) DEPARTMENT OF COMPUTER SCIENCE

(For those joined B.Sc. Computer Science on or after June 2020) **Programme Code: UCS** 

| Course code | Course Title    | Category | L | T | P | Credit |
|-------------|-----------------|----------|---|---|---|--------|
| UCS20C54    | Cloud Computing | Core 13  | 4 | 1 | - | 4      |

L - Lecture T - Tutorial P - Practical

| Year | Semester | Internal | External | Total |
|------|----------|----------|----------|-------|
| III  | VI       | 25       | 75       | 100   |

#### **Preamble**

This course will introduce the basic concepts related to cloud computing technologies, architecture and different cloud models. It will explore on different cloud programming platforms such as Google app Engine, Amazon Web Services (AWS) and Microsoft Azure and explore with some cloud applications. This course give an opportunity to the student to get an exposure to cloud platform.

#### **Course Outcomes**

On the completion of the course the student will be able to

| #   | Course Outcome                                                                                                   | Expected Proficiency | Expected<br>Attainment |
|-----|------------------------------------------------------------------------------------------------------------------|----------------------|------------------------|
| CO1 | Gain knowledge about Cloud Computing and its challenges                                                          | 60%                  | 70%                    |
| CO2 | Familiar with the concepts of Virtualization                                                                     | 60%                  | 70%                    |
| CO3 | Acquire knowledge on various cloud models, architecture and services                                             | 60%                  | 70%                    |
| CO4 | Elaborate components of various cloud services like Amazon Web Services, Microsoft Azure & Google Cloud platform | 60%                  | 70%                    |
| CO5 | Understand and gain awareness about recent cloud applications                                                    | 60%                  | 70%                    |

#### **Mapping of COs with PSOs**

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----|------|------|------|------|------|
| CO1 | S    | L    | -    | L    | L    |
| CO2 | S    | M    | M    | L    | -    |
| CO3 | S    | -    | L    | -    | L    |
| CO4 | S    | M    | M    | M    | M    |
| CO5 | S    | -    | M    | L    | L    |

S-STRONG M-MEDIUM L-LOW

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | S   | L   | L   | L   | -   | -   |
| CO2 | S   | M   | L   | L   | -   | L   |
| CO3 | S   | L   | L   | L   | -   | -   |
| CO4 | S   | M   | M   | L   | M   | M   |
| CO5 | S   | M   | M   | L   | M   | M   |

S-STRONG M-MEDIUM L-LOW

#### **Blooms taxonomy**

|               |       | CA     | End of   |
|---------------|-------|--------|----------|
|               | First | Second | Semester |
| Knowledge-K1  | 40%   | 40%    | 40%      |
| Understand-K2 | 40%   | 40%    | 40%      |
| Apply-K3      | 20%   | 20%    | 20%      |

#### **Content**

Unit-I: 15 Hours

Introduction: Cloud Computing at a Glance - The Vision of Cloud Computing- Defining a Cloud - Cloud Computing Reference Model - Characteristics and Benefits - Historical Developments - Distributed Systems - Virtualization - Web 2.0 - Service Oriented Computing - Utility Oriented Computing - Building Cloud Computing Environments - Application Development - Infrastructure and System Development - Computing Platforms and Technologies - Amazon Web Services - Google AppEngine- Microsoft Azure - Hadoop - Force.com and Salesforce.com - Manjrasoft Aneka.

Unit-II: 15 Hours

**Virtualization:** Introduction - Characteristics of Virtualized Environments - Taxonomy of Virtualization Techniques - Execution Virtualization - Other Types of Virtualization - Virtualization and Cloud Computing - Pros and Cons of Virtualization - Technology Examples - Xen: Paravirtualization - VMWare: Full Virtualization - Microsoft Hyper-V.

Unit-III: 15 Hours

**Cloud Computing Architecture:** Introduction - Cloud Reference Model - Architecture - Infrastructure / Hardware as a Service - Platform as a Service - Software as a Service- Types of Clouds - Public Clouds - Private Clouds - Hybrid Clouds - Community Clouds - Economics of the Cloud - Open Challenges - Cloud Definition - Cloud Interoperability and Standards -

Scalability and Fault Tolerance - Security, Trust and Privacy - Organizational Aspects.

Unit-IV: 15 Hours

**Cloud Platforms in Industry:** Amazon Web Services - Compute Services - Storage Services - Communication Services - Additional Services - Google App Engine - Architecture and Core Concepts - Application Life Cycle - Cost Model - Microsoft Azure - Azure core concepts - SQL Azure - Windows Azure Platform Appliance

Unit-V: 15 Hours

Cloud Applications: Scientific Applications - Healthcare: ECG Analysis in the Cloud - Biology: Protein Structure Protection - Biology: Gene Expression Data Analysis for Cancer Diagnosis - Geoscience: Satellite Image Processing- Business and Consumer Applications - CRM and ERP - Productivity - Social Networking - Media Applications - Multiplayer Online Gaming.

#### **Text Book:**

Rajkumar Buyya, Christian Vacchiola, S.Thamarai Selvi, reprint 2019, Mastering CloudComputing, McGraw Hill Education Private Limited, India

#### **Chapters**

UNIT - I : 1 UNIT - II : 3 UNIT - III : 4 UNIT - IV : 9 UNIT - V : 10

#### **References Books**

- 1. M.N.Rao, 2015, Cloud Computing, 1st Edn, PHI Learning PrivateLimited, India.
- 2. Aravind Doss, Rajeev Nanda, Cloud Computing: A Practitioner's Guide,1st Edn, McGraw Hill Education Private Limited, India

#### Web resources

https://azure.microsoft.com/en-in/overview/what-is-cloud-computing/

https://aws.amazon.com/what-is-cloud-computing

https://www.iavatpoint.com/virtualization-in-cloud-computing

https://www.vmware.com/pdf/vi3\_35/esx\_3/r35u2/vi3\_35\_25\_u2\_intro\_vi.pdf

https://snscourseware.org/snscenew/files/1570845125.pdf

#### **Course Designers**

Mrs.A.M.Hema Mrs.K.Sharmila

#### THIAGARAJAR COLLEGE, MADURAI - 9.

## (Re-Accredited with "A++" Grade by NAAC) DEPARTMENT OF COMPUTER SCIENCE

(For those joined B.Sc. Computer Science on or after June 2020)

**Programme Code: UCS** 

| Course code | Course Title              | Category   | L | T | P | Credit |
|-------------|---------------------------|------------|---|---|---|--------|
| UCS20CL51   | Python Programming<br>Lab | Core Lab 7 | - | - | 4 | 2      |

L – Lecture T – Tutorial P – Practical

| Year | Semester | Internal | External | Total |
|------|----------|----------|----------|-------|
| III  | V        | 40       | 60       | 100   |

#### **Preamble**

This course is designed to develop python programs using OOPs, List, tuple, set, dictionaries, widgets concepts and also dealt with MySQL database connectivity.

#### **Course Outcomes**

On the completion of the course the student will be able to

| #   | Course Outcome                                                                                                          | Expected<br>Proficiency<br>(%) | Expected<br>Attainment<br>(%) |
|-----|-------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------|
| CO1 | Develop applications using control statements, membership and identity operators.                                       | 70                             | 70                            |
| CO2 | Implement applications using set, list, tuple, dictionaries and Exception handling                                      | 70                             | 70                            |
| CO3 | Develop applications using OOPs concepts in python                                                                      | 70                             | 70                            |
| CO4 | Create GUI applications using widgets and menu bar                                                                      | 70                             | 70                            |
| CO5 | Develop interactive applications using MySQL database and to create application using data frame and data visualization | 70                             | 70                            |

#### **Mapping of COs with PSOs**

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----|------|------|------|------|------|
| CO1 | L    | M    | L    | M    | -    |
| CO2 | L    | S    | M    | M    | L    |
| CO3 | L    | S    | S    | S    | L    |
| CO4 | L    | S    | S    | S    | S    |
| CO5 | L    | S    | S    | S    | S    |

L- LOW M-MEDIUM S-STRONG

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | M   | M   | L   | L   | -   | -   |
| CO2 | M   | S   | M   | L   | -   | -   |
| CO3 | M   | S   | M   | M   | -   | L   |
| CO4 | M   | S   | M   | M   | -   | M   |
| CO5 | M   | S   | M   | S   | -   | S   |

L- LOW M-MEDIUM S-STRONG

#### **Content**

- 1. Program to demonstrate membership and Identity operators
- 2. Program to demonstrate Control statements.
- 3. Program to demonstrate built-in and user defined functions
- 4. Program to demonstrate list and its operations and functions.
- 5. Program to demonstrate Set operations
- 6. Program to demonstrate tuple and its operations and functions
- 7. Program to demonstrate dictionaries and its operations and functions.
- 8. Program to demonstrate Exception Handling
- 9. Program to demonstrate Classes and Objects.
- 10. Program to demonstrate Constructors.
- 11. Program to demonstrate inner classes.
- 12. Program to demonstrate Single and Multiple inheritance.
- 13. Program to demonstrate Operator Overloading.
- 14. Program to demonstrate Method Overloading.
- 15. Program to demonstrate Method Overriding.
- 16. Program to demonstrate various widgets.
- 17. Program to demonstrate menu bar
- 18. Program to demonstrate MySQL Database connectivity, insert, delete, update datain a table.
- 19. Program to demonstrate data frame and its functions.
- 20. Program to demonstrate Bar graph, Line graph and Pie Chart.

#### **Course Designer**

Mrs.SM.Valli Mr.R.Chandrasekar

## THIAGARAJAR COLLEGE, MADURAI - 9. (Re-Accredited with "A++" Grade by NAAC) DEPARTMENT OF COMPUTER SCIENCE

(For those joined B.Sc. Computer Science on or after June 2020)

**Programme Code: UCS** 

| Course code | Course Title      | Category | L | Т | P | Credit |
|-------------|-------------------|----------|---|---|---|--------|
| UCS20C61    | Computer Networks | Core 14  | 4 | 1 | - | 4      |

| L-Lecture $T-Tutor$ | ial P – Practical |
|---------------------|-------------------|
|---------------------|-------------------|

| Year | Semester | Internal | External | Total |
|------|----------|----------|----------|-------|
| III  | VI       | 25       | 75       | 100   |

#### **Preamble**

The aim of this course is to discuss and explain about basics of data communication and networking concepts. Some of the major topics which are included in this course are the OSI reference model, TCP/IP implementation, LANs, WANs, internetworking technologies, Routing and Addressing. Gain the Knowledge in Cryptography and Network Security.

#### **Course Outcomes**

On the completion of the course the student will be able to

| #        | Course Outcome                                            | <b>Expected Proficiency</b> | Expected<br>Attainment |
|----------|-----------------------------------------------------------|-----------------------------|------------------------|
| ('()1    | Recognize the working principles of computer networks,    | 60%                         | 70%                    |
|          | Distinguish OSI model & TCP/IP protocol suite             | 0070                        | 7070                   |
| 14 14 12 | Know about the types of transmission medium,              | 600/                        | 70%                    |
|          | Summarize various error detection & error correction code | 00%                         | 70%                    |
| 11 113   | Summarize various controls of data link layer, Learn the  | 60%                         | 70%                    |
|          | structure of Ethernet                                     |                             |                        |
|          | Acquire the knowledge in IPv4 Addresses, Describe the     | 5001                        | <b>7</b> 00/           |
|          | concepts of routing algorithms, Learn about transport     | 60%                         | 70%                    |
| -        | layer functionalities.                                    |                             |                        |
| 11 115   | Learn functionalities of Application Layer, Enrich their  | 600/                        | 700/                   |
|          | knowledge in Cryptography and Network Security            | 60%                         | 70%                    |

#### **Mapping of COs with PSOs**

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO6 |
|-----|------|------|------|------|------|-----|
| CO1 | M    | -    | -    | -    | S    | -   |
| CO2 | -    | M    | L    | -    | -    | -   |
| CO3 | M    | -    | S    | -    | L    | -   |
| CO4 | M    | -    | -    | -    | L    | L   |
| CO5 | -    | -    | S    | M    | L    | M   |

L – LOW M- MEDIUM S-STRONG

|     | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|-----|-----|-----|-----|-----|
| CO1 | M   | L   | L   | M   | -   |
| CO2 | M   | -   | L   | M   | -   |
| CO3 | M   | -   | M   | M   | L   |
| CO4 | S   | M   | M   | S   | L   |
| CO5 | -   | -   | L   | M   | M   |

L – LOW M- MEDIUM S-STRONG

#### **Blooms taxonomy**

|               |       | CA     | End of   |
|---------------|-------|--------|----------|
|               | First | Second | Semester |
| Knowledge-K1  | 40%   | 40%    | 40%      |
| Understand-K2 | 40%   | 40%    | 40%      |
| Apply-K3      | 20%   | 20%    | 20%      |

#### **Content**

Unit-I: 15 Hours

**Introduction** - Data communications - Networks - Network Types.

**Network models** – Protocol Layering – TCP/IP protocol suite – The OSI Model.

Unit-II: 15 Hours

Transmission media: Introduction - Guided Media - Unguided media.

Error detection and correction: Introduction - Block coding - Cyclic Codes - Checksum.

Unit-III: 15 Hours

**Data Link control:** DLC Services – Datalink Layer Protocols. **Wired LANs: Ethernet:** Ethernet Protocol-Standard Ethernet.

Unit-IV: 15 Hours

**Introduction to Network layer:** Network Layer services- Network Layer Performance- IPv4 Addresses.

**Unicast Routing: Routing Algorithms-** Distance vector Routing & Link state Routing **Introduction to Transport layer:** Introduction – Transport Layer Protocols.

Unit-V: 15 Hours

Standard Client Server Protocols: FTP - Electronic Mail – Domain Name System (DNS).

**Cryptography and Network Security:** Introduction – Confidentiality – Other Aspects of Security.

#### Text Book

Behrouz A.Forouzan, 17th reprint 2019, Data Communications and Networking, 5<sup>th</sup>edn, McGraw Hill Publishing Company Limited.

#### **Chapters**

Unit-I: 1.1 to 1.2, 2.1 to 2.5

Unit-II: 7.1 to 7.2, 8.1, 8.4, 10.1 to 10.5 Unit-III: 11.1 to 11.5, 13.1 to 13.2

Unit-IV: 19.1, 20.1, 20.2 22.3 (Page no: 660-674).

Unit-V: 23.1 to 23.3, 25.2, 26.1 to 26.3

#### References

- 1. Andrew S. Tanenbaum, 2004, Computer Networks, 4thedn, Prentice Hall of India Pvt Ltd.
- 2. Prakash C.Gupta, 2006, Data Communications and Computer Networks, Prentice Hall of India Pvt Ltd.

#### Web Resources

https://www.tutorialspoint.com/data\_communication\_computer\_network/data\_communication\_computer\_network\_tutorial.pdf

http://elearning.ascollegelive.net/studyMaterial/bca/bca\_3rd\_year/Networking%20Notes.pdf http://www.di.unipi.it/~bonucce/11-Datacommunication.pdf

#### **Course Designer**

Mr.R.Chandrasekar Dr.A.Sharmista



## THIAGARAJAR COLLEGE, MADURAI - 9. (Re-Accredited with "A++" Grade by NAAC) DEPARTMENT OF COMPUTER SCIENCE

(For those joined B.Sc. Computer Science on or after June 2020)

**Programme Code: UCS** 

| Course code | Course Title           | Category | L | Т | P | Credit |
|-------------|------------------------|----------|---|---|---|--------|
| UCS20C62    | Open Source Technology | Core 15  | 4 | - | - | 4      |

L – Lecture T –

T – Tutorial

P – Practical

| Year | Semester | Internal | External | Total |
|------|----------|----------|----------|-------|
| III  | VI       | 25       | 75       | 100   |

#### Preamble

This Course used to understand the difference between open-source software and commercial software. It is used for development of web application using open-source technology.

#### **Course Outcomes**

On the completion of the course the student will be able to

| #   | Course Outcome                                            | Expected<br>Proficiency(%) | Expected Outcome(%) |
|-----|-----------------------------------------------------------|----------------------------|---------------------|
| CO1 | Understand the basic of open-source software              | 65                         | 60                  |
| CO2 | Elaborate Linux with essential processing                 | 65                         | 60                  |
| CO3 | Demonstrate APACHE working process.                       | 65                         | 60                  |
| CO4 | Learn open source MYSQL with commands                     | 65                         | 60                  |
| CO5 | Apply PHP scripting for open source technology Processing | 65                         | 60                  |

#### **Mapping of COs with PSOs**

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----|------|------|------|------|------|
| CO1 | S    | L    | M    | L    | M    |
| CO2 | S    | M    | M    | L    | L    |
| CO3 | M    | M    | S    | M    | M    |
| CO4 | L    | M    | S    | L    | M    |
| CO5 | L    | S    | S    | L    | M    |

S-STRONG M-MEDIUM L-LOW

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | M   | L   | M   | M   | L   | M   |
| CO2 | M   | S   | M   | M   | M   | S   |
| CO3 | M   | L   | M   | S   | S   | S   |
| CO4 | M   | M   | S   | S   | M   | S   |
| CO5 | M   | L   | M   | S   | L   | S   |

S-STRONG M-MEDIUM L-LOW

#### **Blooms taxonomy:**

|            | (     | CA     |                 |
|------------|-------|--------|-----------------|
|            | First | Second | End of Semester |
| Knowledge  | 40%   | 40%    | 40%             |
| Understand | 40%   | 40%    | 40%             |
| Apply      | 20%   | 20%    | 20%             |

#### **Content**

UNIT I 12 Hours

#### **INTRODUCTION:**

Introduction to Open Source – Open Source vs. Commercial Software – What is Linux? - Free Software – Where I can use Linux? Linux Kernel – Linux Distributions

UNIT II 12 Hours LINUX:

Introduction to Linux Essential Commands - Filesystem Concept - Standard Files, The Linux Security Model - Vi Editor - Partitions creation - Shell Introduction, String Processing - Investigating and Managing Processes - Network Clients - Installing Application

UNIT III 12 Hours APACHE:

Apache Explained - Starting, Stopping, and Restarting Apache - Modifying the Default Configuration - Securing Apache - Set User and Group - Consider Allowing Access to Local Documentation - Don't Allow public html Web sites - Apache control with .htaccess

UNIT IV
MYSQL:

12 Hours

Introduction to MYSQL - The Show Databases and Table - The USE command - Create Database and Tables - Describe Table - Select, Insert, Update, and Delete statement - Some Administrative detail - Table Joins - Loading and Dumping a Database.

UNIT V 12 Hours PHP:

Introduction- General Syntactic Characteristics - PHP Scripting - Commenting your code - Primitives, Operations and Expressions - PHP Variables - Operations and Expressions Control Statement - Array - Functions - Basic Form Processing - File and Folder Access - Cookies - Sessions - Database Access with PHP - MySQL - MySQL Functions - Inserting Records - Selecting Records - Deleting Records - Update Records.

#### Text Book

James Lee and Brent Ware, "Open Source Web Development with LAMP using Linux, Apache, MySQL, Perl and PHP", , Dorling Kindersley(India) Pvt. Ltd, 2008.

#### **Chapters:**

| Unit | Chapters   |
|------|------------|
| I    | Chapter 1  |
| II   | Chapter 2  |
| III  | Chapter 3  |
| IV   | Chapter 5  |
| V    | Chapter 12 |

#### References

1. S.Chand, Operating Systems – A Practical Approach, 4<sup>th</sup> edn.

#### Web Resources:

https://www.javatpoint.com/linux-tutorial

https://www.guru99.com/apache.html

https://www.tutorialspoint.com/mysql/index.htm

https://www.w3schools.com/php/

#### **Course Designers:**

Dr. G.Rakesh Mr J.Prakash



# THIAGARAJAR COLLEGE, MADURAI - 9. (Re-Accredited with "A++" Grade by NAAC) DEPARTMENT OF COMPUTER SCIENCE

(For those joined B.Sc. Computer Science on or after June 2020)

**Programme Code: UCS** 

| Course code | Course Title      | Category | L | Т | P | Credit |
|-------------|-------------------|----------|---|---|---|--------|
| UCS20C63    | Operating Systems | Core 16  | 4 | 1 | - | 4      |

L-Lecture T- Tutorial P-Practical

| Year | Semester | Internal | External | Total |
|------|----------|----------|----------|-------|
| III  | V        | 25       | 75       | 100   |

#### Preamble

The course facilitates the students to familiarize the basic concepts of operating systems and its functionalities, services and management policies with process, memory, file and disk.

#### Course Outcomes

On the completion of the course the student will be able to

| #   | Course Outcome                                                                 | Expected Proficiency | Expected<br>Attainment |
|-----|--------------------------------------------------------------------------------|----------------------|------------------------|
| CO1 | Explain the need of operating system, its components and evolution.            | 70%                  | 60%                    |
| CO2 | Introduce the concept of process, operations on process and CPU scheduling.    | 70%                  | 60%                    |
| CO3 | Acquire the knowledge of process synchronization and deadlock concept.         | 70%                  | 60%                    |
| CO4 | Enrich their knowledge in memory management concept and management techniques. | 70%                  | 60%                    |
| CO5 | Describe the File concepts and Disk scheduling methods                         | 70%                  | 60%                    |

#### **Mapping of COs with PSOs**

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----|------|------|------|------|------|
| CO1 | M    |      |      |      |      |
| CO2 | M    | M    | L    |      |      |
| CO3 | M    | M    | M    | S    |      |
| CO4 | M    | M    | L    | S    | L    |
| CO5 | M    | L    | L    | M    |      |

S-STRONG M-MEDIUM L-LOW

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | M   | -   | S   | M   | -   | -   |
| CO2 |     | S   |     | S   | M   | M   |
| CO3 | •   | S   | S   | -   | M   | M   |
| CO4 | S   | S   | S   | -   | M   | M   |
| CO5 | L   | -   | M   | -   | S   | -   |

S-STRONG M-MEDIUM L-LOW

#### **Blooms Taxonomy**

|               | CA    |        | End of   |  |
|---------------|-------|--------|----------|--|
|               | First | Second | Semester |  |
| Knowledge-K1  | 40%   | 40%    | 40%      |  |
| Understand-K2 | 40%   | 40%    | 40%      |  |
| Apply-K3      | 20%   | 20%    | 20%      |  |

#### Content

#### **Unit-I Introduction to OS and OS Structure:**

15 Hours

Introduction: OS Concepts- Batch Systems- Multi programmed Systems- Time sharing Systems- Desktop systems – Multiprocessor Systems - Distributed Systems. System Structure: System Components- System Calls.

#### **Unit-II Process and Scheduling:**

15 Hours

Process: Process concept- Process Scheduling- Operations on Process- Co-operating Processes- Interprocess Communication

CPU Scheduling: Basic Concepts- Scheduling Criteria-Scheduling Algorithms.

#### **Unit-III Process Synchronization and Deadlock:**

15 Hours

Process Synchronization: Background- The Critical Section Problem. Deadlock: Deadlock characterization-Methods for handling Deadlocks - Deadlock

Avoidance - Deadlock

Detection

Deadlock: Deadlock

Avoidance - Deadlock

#### **Unit-IV Memory Management and Virtual Memory:**

15 Hours

Memory Management: Background - Swapping - Contiguous Memory Allocation - Paging-Segmentation.

Virtual Memory: Background- Demand Paging-Page Replacement- Allocation of Frames-Thrashing.

#### **Unit-V File System and Disk Scheduling:**

15 Hours

File System: File Concepts-Access Methods-Allocation Methods- FreeSpace Management. Disk Scheduling: Disk Structure-Disk Scheduling- FCFS Scheduling- SSTF Scheduling- SCAN and CSCAN Scheduling- LOOK and CLOOK Scheduling.

#### Text book

Silberschatz, A., Galvin, P. B., Gagne, G. (2008), Operating System Concepts, 6<sup>th</sup>edn, Wiley-India (P) Ltd.,New Delhi.

#### **Chapters (Relevant Topics only)**

Unit-I : 1.1 to 1.5, 3.1,3.3

Unit-II : 4.1 to 4.5, 6.1 to 6.3

Unit-III : 7.1, 7.2, 8.2 to 8.7

Unit-IV :9.1to9.5,10.1,10.2,10.4to10.6

Unit-V : 11.1, 11.2, 12.4, 12.5, 14.1, 14.2

#### Reference

1. William Stallings,2000, Operating Systems,2<sup>nd</sup>edn, PHI Prentice Hall,NewDelhi

2. Achyut S Godbole, Operating systems, McGraw-Hill,3<sup>rd</sup>edn

3. Harvey M Deitel, 1984, "An Introduction to operating system" Addison Wesley Publishing Co.NewYork.

#### **Web Resources**

 $\underline{https://nptel.ac.in/downloads/106108101/http://}$ 

williamstallings.com/Extras/OS-

Notes/notes.html

https://www.tutorialspoint.com/operating\_system/operating\_system\_tuto

rial.pdfhttps://lecturenotes.in/subject/56/operating-systems-os

#### **Course designer:**

Dr.K.Natarajan

Mrs.K.Suriya Prabha



(For those joined B.Sc. Computer Science on or after June 2020)

**Programme Code: UCS** 

| Course code | Course Title                  | Category     | L | T | P | Credit |
|-------------|-------------------------------|--------------|---|---|---|--------|
| UCS20CL61   | Open Source Technology<br>Lab | Core Lab – 8 | - | - | 4 | 2      |

L – Lecture T – Tutorial P – Practical

| Year | Semester | Internal | External | Total |
|------|----------|----------|----------|-------|
| III  | VI       | 40       | 60       | 100   |

#### **Preamble**

This course provides the knowledge of Open source technology usage in computational process

#### **Course Outcomes**

On the completion of the course the student will be able to

| #   | Course Outcome                            | Expected<br>Proficiency<br>(%) | Expected<br>Attainment<br>(%) |
|-----|-------------------------------------------|--------------------------------|-------------------------------|
| CO1 | Learn Open-source OS installation         | 70                             | 65                            |
| CO2 | Acquire Database Open-source installation | 70                             | 65                            |
| CO3 | Enrich Web based Open-Source installation | 70                             | 65                            |
| CO4 | Illustrate Open-Source Connectivity       | 70                             | 65                            |
| CO5 | Understand Python Programming             | 70                             | 65                            |

# **Mapping of COs with PSOs**

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----|------|------|------|------|------|
| CO1 | S    | S    | S    | S    | M    |
| CO2 | M    | S    | S    | S    | M    |
| CO3 | S    | M    | S    | M    | S    |
| CO4 | S    | S    | M    | S    | S    |
| CO5 | S    | M    | M    | S    | M    |

**S-STRONG** 

**M-MEDIUM** 

L-LOW

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | S   | L   | M   | M   | L   | M   |
| CO2 | M   | S   | S   | M   | S   | S   |
| CO3 | S   | L   | M   | S   | S   | S   |
| CO4 | M   | M   | S   | S   | M   | S   |
| CO5 | S   | L   | M   | S   | L   | S   |

S-STRONG M-MEDIUM L-LOW

#### Content

- 1. Linux installation
- 2. My SQL installation
- 3. Apache server installation
- 4. Linux shell program for loop condition
- 5. Linux Shell Program for case condition
- 6. Linux shell program for function
- 7. Linux program for make directory
- 8. Linux shell program for wait and sleep command
- 9. Linux shell program for File processing
- 10. PHP and MY SQL Connectivity

# References

- 1. S.Chand, Operating Systems A Practical Approach,  $4^{th}$  edn.
- 2. Launa Thomson and Duke welling, PHP and MySQL web development, edition 2009.

#### Web Resources

https://ittutorials.net/open-source/

#### Course designer:

Dr.G.Rakesh

Mr.J.Prakash

(For those joined B.Sc. Computer Science on or after June 2020)

**Programme Code: UCS** 

| Course Code  | Course Title    | Category             | L | T | P | Credit |
|--------------|-----------------|----------------------|---|---|---|--------|
| UCS20CE51/61 | Data Mining and | <b>Core Elective</b> | 5 | - | - | 5      |
|              | Warehousing     |                      |   |   |   |        |

L - Lecture T - Tutorial P – Practicals

| Year | Semester | Int. Marks | Ext. Marks | Total |
|------|----------|------------|------------|-------|
| III  | V/VI     | 25         | 75         | 100   |

#### **Preamble**

The course provides the knowledge of Database Management principles, the various Data Mining Techniques such as Association rule mining, Clustering, Decision trees and also introduces Rough set theory principles.

#### **Course Outcomes**

On the completion of the course the student will be able to

| #   | Course Outcome                                                                                                  | Expected Proficiency (%) | Expected<br>Attainment<br>(%) |
|-----|-----------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------|
| CO1 | Recall some basic Database management principles and understand the concept of Data Mining and Data warehousing | 80                       | 75                            |
| CO2 | Explain Data Mining Techniques Summarize the issues and Challenges in Data Mining                               | 85                       | 75                            |
| CO3 | Describe Association rule mining technique and apply it to mine rules from some data sets                       | 80                       | 75                            |
| CO4 | Illustrate Clustering algorithms and apply it to solve some problems                                            | 85                       | 70                            |
| CO5 | Describe Decision tree algorithms and Recall Rough set theory principles                                        | 80                       | 75                            |

# **Mapping of COs with PSOs**

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----|------|------|------|------|------|
| CO1 | S    | S    | S    | M    | M    |
| CO2 | S    | M    | M    | S    | M    |
| CO3 | S    | M    | M    | M    | S    |
| CO4 | S    | M    | S    | M    | S    |
| CO5 | S    | M    | S    | M    | S    |

S-STRONG M-MEDIUM L-LOW

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | S   | S   | M   | M   | M   | S   |
| CO2 | S   | M   | M   | S   | M   | S   |
| CO3 | S   | M   | M   | M   | S   | M   |
| CO4 | S   | S   | M   | M   | S   | M   |
| CO5 | S   | M   | S   | M   | M   | M   |

S-STRONG M-MEDIUM L-LOW

#### **Blooms taxonomy**

|                       | CA    |        | End of   |
|-----------------------|-------|--------|----------|
|                       | First | Second | Semester |
| Knowledge(K1)         | 40%   | 40%    | 40%      |
| <b>Understand(K2)</b> | 40%   | 40%    | 40%      |
| Apply(K3)             | 20%   | 20%    | 20%      |

#### **Data Mining and Warehousing**

Unit I 15 Hours

**DATA WAREHOUSING:** Introduction – Data Warehouse Architecture – Dimensional Modelling – Categorisation of Hierarchies – Aggregate Function – Summarisability – Fact Dimension Relationship - OLAP operations – Lattice of Cuboids – OLAP Server – ROLAP – MOLAP.

Unit II 15 Hours

**DATA MINING:** Introduction - What is Data Mining? - Data Mining: Definitions - KDD vs. Data Mining - DBMS vs. DM - Other Related Areas - DM Techniques - Other Mining Problems - Issues and Challenges in DM - DM Application Areas - DM Applications - Case Studies - Conclusion.

Unit III 15 Hours

ASSOCIATION RULES: Introduction – What is an Association Rule? – Methods to Discover Association Rules – Apriori Algorithm – Partition Algorithm – Pincer – Search Algorithm – Dynamic Itemset Counting Algorithm – FP- tree Growth Algorithm – Éclat and dEclat – Rapid Association Rule Mining – Discussion on Different Algorithms – Incremental Algorithm – Border Algorithm – Generalized Association Rule – Association Rules with Item Constraints - Summary.

Unit IV 15 Hours

**CLUSTERING TECHNIQUES:** Introduction - Clustering Paradigms - Partitioning Algorithms - k - Medoid Algorithms - CLARA - CLARANS - Hierarchical Clustering - DBSCAN - BIRCH - CURE - Categorical Clustering Algorithms - STIRR - ROCK - CACTUS - Conclusion .

Unit V 15 Hours

**DECISION TREES:** Introduction - What is a Decision Tree? – Tree Construction Principle – Best Split – Splitting Indices – Splitting Criteria – Decision Tree Construction Algorithms – CART – ID3 – C4.5 – CHAID – Summary

**ROUGH SET THEORY:** Introduction – Definitions – Example – Reduct- Propositional

#### **Text Book:**

Arun K Pujari, 2017 Data Mining Techniques, 4<sup>th</sup> Edition, Universities Press Private Limited, Hydrabad

#### **Chapters:**

| Unit | Chapter/Section                |
|------|--------------------------------|
| I    | 2 (2.1- 2.12)                  |
| II   | 3 (3.1- 3.12)                  |
| III  | 4 ( 4.1 – 4.16)                |
| IV   | 5 (5.1 – 5.15)                 |
| V    | 6 (6.1 – 6.12) & 7 (7.1 – 7.5) |

#### **References:**

- 1. G.K. Gupta, 2014, Introduction to Data Mining with Case studies, Third Edition, PHI Learning Private Limited, Delhi
- 2. Jiawei Han , Micheline Kamber , Jian Pei , 2012, Data Mining Concepts and Techniques , Third Edition, Morgan Kaufmann Publishers, An Imprint of Elsevier , New Delhi.
- 3. Ian H.Witten, Eibe Frank, Mark A. Hall, Christopher J. Pal, 2016, Data Mining Practical Machine Learning Tools and Techniques, Fourth Edition, Morgan Kaufmann Publishers, Imprint of Elsevier, New Delhi.

#### **Course Designers:**

- 1. Dr. B. Arivazhagan
- 2. Mrs. S.Shanavas Parvin



(For those joined B.Sc. Computer Science on or after June 2020) **Programme Code: UCS** 

| Course code  | Course Title             | Category      | L | T | P | Credit |
|--------------|--------------------------|---------------|---|---|---|--------|
| UCS20CE51/61 | Multimedia<br>Technology | Core Elective | 5 | - | - | 5      |

L – Lecture T – Tutorial P – Practical

| Year | Semester | Internal | External | Total |
|------|----------|----------|----------|-------|
| III  | V/V1     | 25       | 75       | 100   |

#### **Preamble**

This course is to understand the practical use of multimedia in delivering information and to provide knowledge for developing multimedia products by acquiring, integrating and producing the various multimedia elements.

#### **Course Outcomes**

On the completion of the course the student will be able to

| #   | Course<br>Outcome                                                                             | Expected<br>Proficiency | Expected<br>Attainment |
|-----|-----------------------------------------------------------------------------------------------|-------------------------|------------------------|
|     | Prepare multimedia professionals equipped with artistic expression and creativity.            | 60%                     | 70%                    |
|     | Identify and describe the functions of the general skill sets in the multimedia industry.     | 60%                     | 70%                    |
| CO3 | Identify the basic component of a multimedia project.                                         | 60%                     | 70%                    |
|     | Identify the basic hardware and software requirement for multimedia development and playback. | 60%                     | 70%                    |
| CO5 | Learn various multimedia authoring tools.                                                     | 60%                     | 70%                    |

# **Mapping of COs with PSOs**

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----|------|------|------|------|------|
| CO1 | M    | L    | -    | -    | M    |
| CO2 | S    | M    | L    | -    | L    |
| CO3 | L    | L    | M    | M    | S    |
| CO4 | S    | M    | -    | M    | -    |
| CO5 | S    | S    | L    | M    | -    |

S-STRONG M-MEDIUM L-LOW

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | -   | L   | M   | L   | -   | -   |
| CO2 | M   | L   | -   | L   | L   | -   |
| CO3 | L   | M   | L   | M   | S   | M   |
| CO4 | M   | S   | M   | S   | S   | -   |
| CO5 | S   | S   | -   | S   | S   | S   |

S-STRONG M-MEDIUM L-LOW

#### **Blooms Taxonomy**

|               | CA    |        | End of   |
|---------------|-------|--------|----------|
|               | First | Second | Semester |
| Knowledge-K1  | 40%   | 40%    | 40%      |
| Understand-K2 | 40%   | 40%    | 40%      |
| Apply-K3      | 20%   | 20%    | 20%      |

#### Content

#### Unit-I

Introduction: 15 Hours

Objectives – Brief History of Multimedia – What Is Multimedia? – Resources for Multimedia Developers – Types of Products – Evaluations – Operating Systems and Software – Multimedia Computer Architecture.

#### **Unit-II**

#### **Text and Graphics:**

15 Hours

Elements of Text – Text Data Files – Using Text in Multimedia Applications –Hypertext - Elements of Graphics – Images and Color – Graphics File and Application Formats –Obtaining Images for Multimedia Use – Using Graphics in Multimedia Applications.

#### **Unit-III**

#### **Digital Audio:**

15 Hours

Characteristics of Sound and Digital Audio – Digital Audio Systems – MIDI – Audio File Formats – Using Audio in Multimedia Applications.

#### **Unit-IV**

#### **Digital Video and Animation:**

15 Hours

Background on Video – Characteristics of Digital Video – Digital Video data sizing – Video Capture and Playback Systems – Computer Animation – Using Digital Video in Multimedia Applications.

#### **Unit-V**

#### **Product Design and Authoring Tools:**

15 Hours

Building blocks – Classes of Products – Content Organizational Strategies – Story Boarding–Selecting the Right Authoring Paradigm.

#### **Text Books**

David Hillman, Multimedia Technology and Applications, Reprint 2013, Galgotia Publications Pvt. Ltd 1998.

# Chapters

Unit – I:1,2,3 Unit – II:4,5 Unit – III:6 Unit – IV:7 Unit – V:8,9

#### **Reference Book:**


- 1. Tay Vaughan, Multimedia making it work, McGraw Hill Company, Eighth Edition 2010.
- 2. James E.Suman, Multimedia in Action, Vikas Publishing House 1997

#### **Web Resources:**

https://www.baschools.org https://www.slideshare.net/fareedurrahman/multimedia-technologies-introduction

# **Course Designer:**

Dr.A.Sharmista



(For those joined B.Sc. Computer Science on or after June 2020)

**Programme Code: UCS** 

| Course code  | Course Title            | Category      | L | T | P | Credit |
|--------------|-------------------------|---------------|---|---|---|--------|
| UCS20CE51/61 | Artificial Intelligence | Core elective | 5 | - | - | 5      |

L – Lecture T – Tutorial P – Practical

| Year | Semester | Internal | External | Total |
|------|----------|----------|----------|-------|
| III  | V/VI     | 25       | 75       | 100   |

#### **Preamble**

To learn the important features of Artificial Intelligence and expert systems, its programming predicates of knowledge based system development and problem solving systems.

#### **Course Outcomes**

On the completion of the course the student will be able to

| #   | Course Outcome                                                                                           | Expected<br>Proficiency<br>(%) | Expected Attainment (%) |
|-----|----------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------|
| CO1 | To be aware of the Important of Artificial Intelligence and Knowledge based systems.                     | 60%                            | 70%                     |
| CO2 | To Analyse the various AI programming languages and its functionalities                                  | 60%                            | 70%                     |
| CO3 | To study in depth about the Knowledge<br>Representation and Knowledge Organization<br>and its techniques | 60%                            | 70%                     |
| CO4 | To Implement natural language processing techniques and its pattern recognition                          | 60%                            | 70%                     |
| CO5 | To demonstrate the detailed concepts of knowledge acquisition and machine learning principles            | 60%                            | 70%                     |

# **Mapping of COs with PSOs**

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----|------|------|------|------|------|
| CO1 | S    | S    | L    | M    | L    |
| CO2 | M    | M    | M    | S    | L    |
| CO3 | S    | M    | M    | L    | M    |
| CO4 | M    | S    | S    | L    | M    |
| CO5 | S    | L    | L    | S    | S    |

S-STRONG

**M-MEDIUM** 

L-LOW

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | S   | M   | S   | M   | S   | M   |
| CO2 | S   | M   | M   | S   | M   | M   |
| CO3 | S   | M   | M   | S   | L   | L   |
| CO4 | M   | S   | S   | M   | M   | L   |
| CO5 | M   | S   | M   | L   | S   | L   |

S-STRONG M-MEDIUM L-LOW

#### **Blooms taxonomy:**

|            |       | CA     | End of Semester |
|------------|-------|--------|-----------------|
|            | First | Second |                 |
| Knowledge  | 40%   | 40%    | 60%             |
| Understand | 40%   | 40%    | 60%             |
| Apply      | 40%   | 40%    | 60%             |

#### **Content:**

#### **Unit 1: Overview of AI and General Concepts:**

#### 15 Hours

AI, Importance, History of AI, Related fields, Importance of Knowledge, Knowledge based systems, Representation of Knowledge, Knowledge Organization, Manipulation and acquisition. LISP Programming: Syntax and Numerical functions, Manipulation functions in LISP, Functions predicates and conditionals, PROLOG and other AI programming Languages.

#### **Unit 2: Knowledge Representation:**

#### 15 Hours

Formalized symbolic Logics- Syntax and semantics for propositional logic, Syntax and semantics for FOPL, Properties of Wffs, Interference rules, Resolution principles, Dealing with Inconsistency – Truth maintenance systems, Default reasoning and closed world assumption, Predicate completion and circumscription, Modal and temporal logics.

#### **Unit 3: Knowledge Organization and Manipulation:**

#### 15 Hours

Search and Control strategies: Primary concept, Examples of search problems, Uniformed and blind search, Informed search, Search AND OR graphs. Matching techniques: Structures used in matching, Measures of matching, Matching patterns, Partial matching, Fuzzy matching algorithm, RETE matching algorithm, Indexing and retrieval Techniques.

#### **Unit 4: Natural Language Processing and Expert systems:**

15 Hours

Overview of Linguistics, Grammars and Languages, Basic Parsing techniques, Semantic analysis and representation structures, Natural Language systems, Recognition and classification process, Learning classification patterns, Speech recognition and understanding, rule based system architectures, Non production system architecture, Knowledge system building tools.

#### **Unit 5: Knowledge Acquisition:**

15 Hours

Types of Learning, General Learning model, Performance measures, Perceptron's, Checker playing, Learning automata and genetic algorithms.

#### **Text Book:**

Introduction to Artificial Intelligence and Expert systems "DAN. W. PATTERSON", 2005-06, PRENTICE HALL OF INDIA Pvt Ltd.

#### **Chapters:**

| Unit | Chapter                |
|------|------------------------|
| I    | Chapters 1 to 3        |
| II   | Chapters 4 and 5       |
| III  | Chapter 9 to 11        |
| IV   | Chapters 12, 13 and 15 |
| V    | Chapters 16 and 17     |

#### **References:**

- Graham, (1996). ANSI Common LISP, Prentice Hall.
- Nilson N.J., (1980). Principles of Artificial Intelligence, Berlin: Springer Verlag.
- Rich, E & Knight, (2003). Artificial Intelligence, Tata McGraw Hill Publications Rolston.D.W, Principles of AI & Expert System Development, Tata MacGraw Hill Publications.

#### **Web Resources**

- 1. https://libguides.wilmu.edu/AI/library
- 2. https://libguides.mskcc.org/artificial\_intelligence/libraryresources
- 3. <a href="https://www.researchgate.net/publication/327831852">https://www.researchgate.net/publication/327831852</a> Artificial Intelligence and it s applications in Libraries
- 4. <a href="https://www.elsevier.com/connect/resource-center/artificial-intelligence">https://www.elsevier.com/connect/resource-center/artificial-intelligence</a>

#### **Course Designer:**

Dr. N. Gnanasankaran



(For those joined B.Sc. Computer Science on or after June 2020) **Programme Code: UCS** 

| Course code  | Course Title | Category | L | T | P | Credit |
|--------------|--------------|----------|---|---|---|--------|
|              | E-Commerce   | Core     | 5 | - | - | 5      |
| UCS20CE51/61 | Technologies | elective |   |   |   |        |

T – Tutorial P – Practical L – Lecture

| Year | Semester | Int. marks | Ext. Marks | Total |
|------|----------|------------|------------|-------|
| III  | V/VI     | 25         | 75         | 100   |

#### **Preamble:**

The aim of the course is to introduce the students of understanding the fundamental principles of e-Business and e-commerce and the role of management, the underlying used technologies with emphasis on Internet Technologies and examines the internet security and security tools.

#### **Course Outcomes**

On the successful completion of this course, Students will be able to:

| #   | Description                                                                                                            | Expected Proficiency | Expected<br>Attainment |
|-----|------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------|
| CO1 | Characterizes basic business models on the web and scope of E-Commerce and its applications.                           | 60%                  | 70%                    |
| CO2 | Recognize the impact of information and communication Technologies, especially of the internet in business operations. | 60%                  | 70%                    |
| CO3 | Illustrate the internet security infer with the security algorithms.                                                   | 60%                  | 70%                    |
| CO4 | Explain the concepts of EDI and types of electronic payment system.                                                    | 60%                  | 70%                    |
| CO5 | Extend the electronic security by make use of security tools and network security                                      | 60%                  | 70%                    |

# **Mapping of COs with PSOs**

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----|------|------|------|------|------|
| CO1 | S    | M    | -    | -    | -    |
| CO2 | S    | M    | L    | M    | L    |
| CO3 | S    | M    | L    | M    | L    |
| CO4 | S    | L    | L    | M    | -    |
| CO5 | M    | L    | M    | M    | L    |

S-STRONG **M-MEDIUM** L-LOW

|     | PO1 | PO2          | PO3          | PO4     | PO5 | PO6          |
|-----|-----|--------------|--------------|---------|-----|--------------|
|     |     |              |              |         |     |              |
| CO1 | S   | $\mathbf{M}$ | $\mathbf{M}$ | ${f L}$ | M   | $\mathbf{S}$ |
| CO2 | S   | M            | L            | L       | M   | S            |
| CO3 | S   | M            | L            | M       | M   | -            |
| CO4 | S   | M            | L            | -       | -   | M            |
| CO5 | M   | L            | M            | M       | L   | M            |

S-STRONG M-MEDIUM L-LOW

#### Bloom's Taxonomy:

|               |       | CA     | End of   |
|---------------|-------|--------|----------|
|               | First | Second | Semester |
| Knowledge-K1  | 40%   | 40%    | 40%      |
| Understand-K2 | 40%   | 40%    | 40%      |
| Apply-K3      | 20%   | 20%    | 20%      |

#### **Content:**

UNIT I 15 Hours

An introduction to Electronic commerce: What is E-Commerce, Main activities of E-Commerce, Goals of E-Commerce, Technical Components of E-Commerce, Functions of E-Commerce, Advantages and disadvantages of E-Commerce, Scope of E-Commerce, Electronic Commerce Applications. E-Commerce Models: Electronic Commerce and Electronic Business (B2B, B2C)

UNIT II 15 Hours

**The Internet**: Evolution of Internet, Components of Internet world, Categories of Network, Internet Service Provider, Applications Service Providers, World Wide Web, Internet Functions. **Portals:** Electronic Commerce Portals, B2B Portals. **Building own website**: Reasons for building your own website – ideal website-Domain registration - Web promotion.

UNIT III 15 Hours

**Internet Security**: Secure Transaction, Computer Monitoring, Privacy on Internet, Corporate Email privacy, Computer Crime, Specific Threats, Attack on Computer System, Software Packages, Hacking, Encryption and Decryption, DES, Public Key Encryption, RSA, Internet Security, Firewall, Digital Signature.

UNIT IV 15 Hours

**Electronic Data Exchange**: Introduction, Concepts of EDI and Limitation, Applications of EDI, Disadvantages of EDI, EDI model. **Electronic Payment System**: Introduction, Types of Electronic Payment System, Payment Types, Value Exchange System, Credit Card System, Electronic Fund Transfer, Paperless bill, Modern Payment system.

UNIT V 15 Hours

**E-Security**: Introduction—Electronic Security—Attacking Methods- Security Practices—Secure Electronic Transaction (SET) - Security Tools —Network Security — Electronic Commerce Act-Virtual Private Network.

#### Text Book

C.S.V.Murthy, 2017, E-Commerce Concepts – Models-Strategies, Himalaya Publishing House.

#### **Chapters (Relevant Topics Only)**

UNIT – I : 2, 3 UNIT – II : 4, 5, 9 UNIT – III 10 UNIT – IV : 20, 21 UNIT – V 22

#### Reference

- 1. Gray P. Schneider, 2011, Electronic commerce, International Student Edition.
- 2. Henry Chan, Raymond Lee, Tharam Dillon, Elizabeth Chang, 2011, E-Commerce, Fundamentals and Applications, Wiely Student Edition

### **Web Resources**

https://www.tutorialspoint.com/e\_commerce/

https://www.thecounty.ca/media/petcounty/documents/department/developing/a

WhatisE-Commerce.pdf

#### Course designer

#### Dr.R.Sandha



(For those joined B.Sc. Computer Science on or after June 2020) **Programme Code: UCS** 

| Course<br>Code | Course Title | Category             | L | Т | P | Credit |
|----------------|--------------|----------------------|---|---|---|--------|
| UCS20CE51/61   | Fuzzy Logic  | <b>Core Elective</b> | 5 | - | - | 5      |

|      | L - Lecture | T-Tutorial $P-I$ | Practical's |       |
|------|-------------|------------------|-------------|-------|
| Year | Semester    | Int. Marks       | Ext. Marks  | Total |
| III  | V/VI        | 25               | 75          | 100   |

#### **Preamble**

The course provides the knowledge of Propositional Logic and Predicate Logic. It introduces the principles of Fuzzy set theory and Fuzzy logic. Fuzzy logic has been used in numerous applications such as facial pattern recognition, air conditioners, washing machines, vacuum cleaners, transmission systems and unmanned helicopters etc.

#### **Course Outcomes**

On the completion of the course the student will be able to

| #   | Course Outcome                                                                                                                 | Expected Proficiency (%) | Expected<br>Attainment<br>(%) |
|-----|--------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------|
| CO1 | Recall some basic Propositional logic and Predicate logic principles and Solve some problems                                   | 80                       | 75                            |
| CO2 | Explain Fuzzy set theory principles, solve some problems based on Operations on Fuzzy sets.                                    | 75                       | 70                            |
| CO3 | Describe Operations on Fuzzy relations, Alpha cuts of a Fuzzy relation and Projections of Fuzzy relations                      | 80                       | 75                            |
| CO4 | Demonstrate Fuzzy propositions and their interpretations in terms of Fuzzy sets and Make use of it solve some problems         | 80                       | 70                            |
| CO5 | Describe Fuzzy expert systems, Compare classical Control theory vs Fuzzy control and outline Fuzzy methods in decision making. | 80                       | 75                            |

# **Mapping of COs with PSOs**

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----|------|------|------|------|------|
| CO1 | M    | S    | S    | M    | S    |
| CO2 | M    | S    | M    | S    | M    |
| CO3 | S    | M    | M    | M    | S    |
| CO4 | S    | M    | S    | M    | M    |
| CO5 | S    | S    | S    | M    | M    |

S-STRONG M-MEDIUM L-LOW

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | S   | S   | S   | M   | M   | S   |
| CO2 | S   | M   | S   | S   | M   | S   |
| CO3 | M   | M   | M   | M   | S   | M   |
| CO4 | M   | S   | M   | M   | S   | M   |
| CO5 | M   | M   | S   | M   | M   | M   |

S-STRONG M-MEDIUM L-LOW

#### **Blooms taxonomy**

|                       | (     | CA     | End of   |
|-----------------------|-------|--------|----------|
|                       | First | Second | Semester |
| Knowledge(K1)         | 40%   | 40%    | 40%      |
| <b>Understand(K2)</b> | 40%   | 40%    | 40%      |
| Apply(K3)             | 20%   | 20%    | 20%      |

#### **Content**

Unit I 15 Hours

# PROPOSITIONAL LOGIC

 $Introduction-Syntax\ of\ PL(1)-Semantics\ of\ PL(1)-Certain\ Semantic\ Properties-Certain\ Properties\ Satisfied\ by\ the\ Connectives-Inference\ Rules-Derivation-Resolution$ 

#### PREDICATE LOGIC

Introduction – Syntax of PL (2) – Semantics of PL (2) – Semantic Properties – Certain Properties Satisfied by the Connectives and Quantifiers – Derivations - Resolution in PL (2)

Unit II 15 Hours

#### **FUZZY SET THEORY**

Introduction – Concept of a Fuzzy Set – Relations between Fuzzy Sets – Operations on Fuzzy Sets – Properties of the Standard Operations – Certain Numbers Associated with a Fuzzy Set – Certain Crisp Sets Associated with a Fuzzy Set – Certain Fuzzy Sets Associated with a Given Fuzzy Set-Extension Principle

Unit III 15 Hours
FUZZY RELATIONS

 $\label{eq:continuous_equation} Introduction - Fuzzy \ Relations - Operations \ on \ Fuzzy \ Relation - \alpha - Cuts \ of \ a \ Fuzzy \ Relation - Composition \ of \ Fuzzy \ Relations - Cylindric \ Extensions - Cylindric \ Closure- Fuzzy \ Relation \ on \ a \ Domain$ 

Unit IV 15 Hours FUZZY LOGIC

Introduction - Three –valued Logics – N valued Logics for  $N \ge 4$  – Infinite valued Logics – Fuzzy Logics – Fuzzy Propositions and their Interpretations in Terms of Fuzzy sets – Fuzzy Rules and Their Interpretations in Terms of Fuzzy Relations – Fuzzy Inference or Approximate Reasoning – More on Fuzzy Inference – Generalizations of Fuzzy Logics

Unit V 15 Hours

#### FUZZY METHODS IN CONTROL THEORY

Introduction – Introduction to Fuzzy Logic Controller – Fuzzy Expert Systems – Classical Control Theory vs Fuzzy Control= Illustrative examples – Working of an FLC through Examples – Details of the Components of FLC – Mathematical Formulation of an FLC – Real –life Examples

#### **FUZZY METHODS IN DECISION MAKING**

Introduction - Introduction to Decision Making - Introduction to Fuzzy Methods in Decision Making

#### **Text Book:**

Ganesh M , 2009, Introduction to Fuzzy Sets and Fuzzy Logic , PHI Learning Private Limited, New Delhi

### **Chapters**

| Unit | Chapter/Section                    |
|------|------------------------------------|
| I    | 2 (2.1- 2.8) & 3 (3.1 – 3.7)       |
| II   | 6 (6.1 – 6.9)                      |
| III  | 7(7.1 – 7.9)                       |
| IV   | 8 ( 8.1 – 8.10)                    |
| V    | 9 (9.1 – 9.9) & 10 ( 10.1 – 10. 3) |

#### **References:**

- 1. H.J. Zimmermann, 2010, Fuzzy Set theory and its Applications, Fourth Edition, Springer International Edition, New Delhi
- 2. Hung T. Nguyen , Elbert A . Wlaker ,2009 A First Course in Fuzzy Logic , Third Edition Chapman & Hall/ CRC , Taylor & Fransis Group , Chennai .
- 3. George J. Klir/ Bo Yuan ,2002, Fuzzy Sets and Fuzzy Logic Theory and Applications , Prentice Hall of India Private Limited , New Delhi .

#### **Course Designers:**

- 1. Dr. B. Arivazhagan
- 2. Mrs. S.Shanavas Parvin



(For those joined B.Sc. Computer Science on or after June 2020)

**Programme Code: UCS** 

| Course code  | Course Title Category |                | L | T | P | Credit |
|--------------|-----------------------|----------------|---|---|---|--------|
|              |                       | Skill Enhanced |   |   |   |        |
| UCS20SE51/61 | Office Automation     | Elective       | - | - | 2 | 2      |

| L – Lecture |          | - Tutorial | P – Practical |       |
|-------------|----------|------------|---------------|-------|
| Year        | Semester | Int. marks | Ext. Marks    | Total |
| III         | V/VI     | 15         | 35            | 50    |

#### **Preamble:**

Office tools course would enable the students in crafting professional word documents, excel spread sheets, power point presentations using the Microsoft suite of office tools. To familiarize the students in preparation of documents and presentations with office automationtools.

#### CourseOutcomes

On the successful completion of this course, Students will be able to:

| #   | Description                                                                                                    | Expected<br>Proficiency | Expected<br>Attainment |
|-----|----------------------------------------------------------------------------------------------------------------|-------------------------|------------------------|
| CO1 | Identify importance of Microsoft word Accessing Features                                                       | 75%                     | 75%                    |
| CO2 | Categorize basic formatting options, word operations and perform documentation.                                | 75%                     | 75%                    |
| CO3 | Illustrate the spread sheet features to implement calculations and performance analysis                        | 75%                     | 75%                    |
| CO4 | Explain working on basic power point utilities and tools which help them create basic power point presentation | 75%                     | 75%                    |
| CO5 | Extend the power point presentation to Slide Transition, Custom Animation, Auto Rehearsing                     | 75%                     | 75%                    |

# **Mapping of COs with PSOs**

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----|------|------|------|------|------|
| CO1 | S    | M    | -    | -    | -    |
| CO2 | S    | M    | L    | M    | L    |
| CO3 | S    | M    | L    | M    | L    |
| CO4 | S    | L    | L    | M    | -    |
| CO5 | M    | L    | M    | M    | L    |

S-STRONG M-MEDIUM L-LOW

#### **Mapping of COs with POs Outcomes**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | S   | M   | M   | L   | M   | S   |
| CO2 | S   | M   | L   | L   | M   | S   |
| CO3 | S   | M   | L   | M   | M   | -   |
| CO4 | S   | M   | L   | -   | -   | M   |
| CO5 | M   | L   | M   | M   | L   | M   |

S-STRONG M-MEDIUM L-LOW

#### **Content:**

#### Word

- 1. Using word to create project certificate. Features to be covered:-Formatting Fontsin word, Drop Cap in word, Applying Text effects, Using Character Spacing, Borders and Colors, Inserting Header and Footer, Using Date and Time option in Word.
- 2. Creating project abstract Features to be covered:-Formatting Styles, Inserting table, Bullets and Numbering, Changing Text Direction, Cell alignment, Footnote, Hyperlink, Symbols, Spell Check, Track Changes.
- **3.** Creating a Newsletter: Features to be covered:- Table of Content, Newspaper columns, Images from files and clipart, Drawing toolbar and Word Art, Formatting Images, and Paragraphs
- **4.** Creating a Feedback form Features to be covered- Forms, Text Fields, Insertingobjects, Mail Merge in Word.

#### Excel

- **5.** Creating a Scheduler Features to be covered: Gridlines, Format Cells, Summation, auto fill Formatting Text
- **6.** Implement calculations using:- Cell Referencing, Formulae in excel average, St. Deviation, Charts, Renaming and Inserting worksheets, Hyper linking, Countfunction, LOOKUP/VLOOKUP
- **7.** Develop performance analysis using:- Split cells, freeze panes, groupand outline, Sorting, Boolean and logical operators, Conditional formatting

#### **MS Power Point**

- **8.** Create Power point using :- PPT Orientation, Slide Layouts, Inserting Text, Word Art, Formatting Text, Bullets and Numbering, Auto Shapes, Lines and Arrows
- **9.** Create interactive Power point using: Hyperlinks, Inserting –Images, Clip Art, Audio, Video, Objects, Tablesand Charts

#### Text Book

Steve Sagman, 2001, Microsoft Office for Windows Pearson Publications

#### **Web Resources**

https://www.w3schools.blog/ms-word-tutorial

https://www.javatpoint.com/ms-word-tutorial

https://www.w3schools.com/EXCEL/index.php

#### **Course designer**

#### Dr.R.Sandha

(For those joined B.Sc. Computer Science on or after June 2020) **Programme Code: UCS** 

|   | Course code  | Course Title           | Category                   | L | T | P | Credit |
|---|--------------|------------------------|----------------------------|---|---|---|--------|
| Ī | UCS20SE51\61 | Android<br>Programming | Skill Enhanced<br>Elective | - | - | 2 | 2      |

L-Lecture

T – Tutorial

P – Practical

| Year | Semester | Internal | External | Total |
|------|----------|----------|----------|-------|
| III  | V/VI     | 15       | 35       | 50    |

#### **Preamble**

This course enables the students to design and create Android application.

#### **Course Outcomes:**

On the completion of the course the student will be able to

| #   |                                                                                                          | Expected    | Expected   |
|-----|----------------------------------------------------------------------------------------------------------|-------------|------------|
|     | Course Outcome                                                                                           | Proficiency | Attainment |
| CO1 | Design and implement the user interface using basic controls                                             | 75%         | 75%        |
| CO2 | Learn views and various layout of android                                                                | 75%         | 75%        |
| CO3 | Demonstrate the dialog controls of the Android                                                           | 75%         | 75%        |
| CO4 | To show the contacts and SMS in the mobile phones using contract provider concept                        | 75%         | 75%        |
| CO5 | Demonstrate the location based services(LBS).Build program to toggle between map view and satellite view | 75%         | 75%        |

# **Mapping of COs with PSOs**

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----|------|------|------|------|------|
| CO1 | L    | M    | M    | L    | M    |
| CO2 | L    | M    | M    | L    | M    |
| CO3 | L    | M    | S    | M    | M    |
| CO4 | L    | S    | S    | M    | S    |
| CO5 | M    | S    | S    | M    | S    |

**S-STRONG** 

**M-MEDIUM** 

**L-LOW** 

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | M   | L   | L   | L   | -   | M   |
| CO2 | M   | L   | L   | L   | -   | M   |
| CO3 | M   | L   | M   | L   | -   | S   |
| CO4 | M   | M   | M   | M   | -   | S   |
| CO5 | M   | M   | M   | S   | -   | S   |

**S-STRONG** 

**M-MEDIUM** 

L-LOW

#### **Content**

- 1. BasicControls, Views and Layouts
  - a. Write a program to change the background using button control.
  - b. Write a program to createthe options menu (new window, bookmarks, refresh,windows, forward, more) in the browser.
  - c. Write a program to demonstrate scroll view.
  - d. Write a program to demonstrate various Layouts.
- 2. Dialog Controls
  - a. Write a program to demonstrate alert dialog box.
  - b. Write a program to demonstrate time picker dialog.
  - c. Write a program to demonstrate date picker dialog.
  - d. Write a program to demonstrate progress dialog with spinning wheel.
- 3. Contacts Contract Provider
  - a. Write a program to show contacts in your phone.
  - b. Write a program to show SMS in your phone.
- 4. AndroidLBS GPS
  - a. Write a program to view google map.
  - b. Write a program to know the current location using GPS.
  - c. Write a program to toggle between map view and satellite view.

#### **Text Book**

"Android Aprogrammer" s guide" - Jerome (J.F.) Dimarzio

#### **Web Resources**

https://developer.android.com/develop/index.html http://www.sanfoundry.com/java-android-programingexamples/

#### **Course Designer:**

Mrs. S.M. Valli

(For those joined B.Sc. Computer Science on or after June 2020)

| Programme | Code: | UCS |
|-----------|-------|-----|
| G         |       |     |

| Course Code  | Course Title    | Category                   | L | T | P | Credit |
|--------------|-----------------|----------------------------|---|---|---|--------|
| UCS20SE51/61 | PHP Programming | Skill Enhanced<br>Elective | - | - | 2 | 2      |

L-Lecture T- Tutorial P-Practical

| Year | Semester | Internal | External | Total |
|------|----------|----------|----------|-------|
| III  | V/VI     | 15       | 35       | 50    |

#### **Preamble**

This course will enable the student to build real-world, dynamic webpages using PHP and MySQL.It provides a platform to create and analyze websites under web 2.0.

#### **Course Outcomes**

On the completion of the course the student will be able to

| #   | Course Outcome                                                                                    | Expected Proficiency | Expected<br>Attainment |
|-----|---------------------------------------------------------------------------------------------------|----------------------|------------------------|
| CO1 | Build PHP scripts to understand the basic syntax, data                                            | 75%                  | 75%                    |
|     | types, decision making and looping statements.                                                    |                      |                        |
| CO2 | Construct code to implement array operations                                                      | 75%                  | 75%                    |
| CO3 | Create PHP programs that use various PHP library and user defined functions.                      | 75%                  | 75%                    |
| CO4 | Implement cookie creation and session usage.                                                      | 75%                  | 75%                    |
| CO5 | Develop and solve common web application tasks by writing PHP programs with database connectivity | 75%                  | 75%                    |

# **Mapping of COs with PSOs**

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----|------|------|------|------|------|
| CO1 |      | M    | S    | M    | S    |
| CO2 | M    |      | S    |      | S    |
| CO3 | L    | S    |      | M    |      |
| CO4 |      | M    | S    |      | M    |
| CO5 | M    |      | M    | S    | M    |

S-STRONG M-MEDIUM L-LOW

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 |     | M   | S   | M   |     | S   |
| CO2 | M   |     | M   | S   | M   | M   |
| CO3 | M   | S   |     | M   |     | S   |
| CO4 |     | M   | S   | M   | S   |     |
| CO5 |     | S   | S   |     | M   | S   |

**S-STRONG** 

**M-MEDIUM** 

L-LOW

#### **Content:**

- 1. Program to demonstrate basic syntax, defining variable and constant,
- 2. Program to implement different data types, Operator and Expression.
- 3. Program to demonstrate decision making and looping statements.
- 4. Program to implement array operations.
- 5. Program to demonstrate Key and Value pairs.
- 6. Program to demonstrate string functions.
- 7. Program to implement mathematical functions.
- 8. Program to demonstrate user defined functions.
- a. Function without input argument and no return value.
- b. Function without input argument and return value.
- c. Function with input argument and no return value.
- d. Function with input argument and return value.
- e. Function with default argument.
- 9. Program to find factorial of the given number using recursion.
- 10. Program to demonstrate Cookies and Sessions.
- 11. Program to develop HTML form to design a student mark database using HTML form and process using PHP script.
- 12. Program to demonstrate database connectivity with MySQL.

#### **Web Resources**

https://www.javatpoint.com/php-tutorial

https://phppot.com/

#### **Course Designer:**

Mrs. K. Suriya Prabha

(For those joined B.Sc. Computer Science on or after June 2020) **Programme Code: UCS** 

| Course Code  | Course Title        | Category                   | L | T | P | Credit |
|--------------|---------------------|----------------------------|---|---|---|--------|
| UCS20SE51/61 | Dot Net Programming | Skill Enhanced<br>Elective | 1 | 1 | 2 | 2      |

L – Lecture T – Tutorial P – Practical

| Year | Semester | Internal | External | Total |
|------|----------|----------|----------|-------|
| III  | V/VI     | 15       | 35       | 50    |

#### **Preamble**

The aim of this course is to bridge the gap in interoperability between services of various programming languages. It provide environment for developing various types of applications, such as Windows-based applications and Web-based applications

#### **Course Outcomes:**

On the completion of the course the student will be able to

| #               | Course<br>Outcome                                     | Expected<br>Proficiency | Expected<br>Attainment |
|-----------------|-------------------------------------------------------|-------------------------|------------------------|
| CO1             | Develop GUI applications using various form controls. | 65%                     | 60%                    |
|                 | 1 11 0                                                |                         |                        |
| CO <sub>2</sub> | Create backend applications using ADO.Net             | 65%                     | 60%                    |
| CO3             | Demonstrate string and math functions                 | 65%                     | 60%                    |
| CO4             | Generate reports using Tree view control              | 65%                     | 60%                    |
| CO5             | Handle console and windows applications of VB.NET     | 65%                     | 60%                    |

#### **Mapping of Cos with PSOs**

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----|------|------|------|------|------|
| CO1 | S    | M    | S    | L    | M    |
| CO2 | M    | S    | S    | M    | S    |
| CO3 | S    | M    | M    | L    | L    |
| CO4 | L    | L    | L    | M    | M    |
| CO5 | S    | L    | M    | L    | S    |

**S-STRONG** 

**M-MEDIUM** 

L-LOW

|     | PO1          | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|--------------|-----|-----|-----|-----|-----|
| CO1 | S            | M   | M   | L   | M   | M   |
| CO2 | $\mathbf{L}$ | S   | L   | L   | S   | -   |
| CO3 | M            | -   | L   | -   | L   | L   |
| CO4 | L            | L   | M   | L   | M   | M   |
| CO5 | S            | M   | S   | M   | S   | S   |

S-STRONG M-MEDIUM L-LOW

#### **Content**

#### **VB.NET**

#### **Console Applications**

- 1. Write a program to find out whether the given number is even or odd.
- 2. Write a program to check whether the input is a leap year or not.
- 3. Write a program to find out whether the given number is a prime number.
- 4. Write a program to display the Fibonacci series.
- 5. Write a program to find the roots of the quadratic equation.

#### **Windows Applications**

- 1. Write a program to find the average of marks obtained by a studentin three Subjects using radio and text box controls.
- 2. Write a program to change color in a box using scrollbar controlevent.
- 3. Write a program to display various mouse inputs using mouseevents.
- **4.** Write a program to select date from list of dates or times using DateTime Picker.
- 5. Write a program to implement various ListBox controls to listitems.
- **6.** Write a program to implement various ComboBox controls to list items with different styles.
- 7. Write a program to display Message Box and use InputBox usingfunction.
- **8.** Write a program to implement ContextMenu and RichTextBox.
- 9. Write a program to implement ColorDialog Control to displayselected color.
- 10. Write a program to Create and display student database using ADO. NET
- 11. Write a program to display employee details using DataGrid view.
- 12. Write a program to show making Reports in VB.NET.

#### C#.NET

#### **Console Applications**

- 1. Write a program to display the reserve of the given string.
- 2. Write a program to determine whether a given string is apalindrome or not.
- 3. Write a program to find the factorial of a given number usinglooping statements.
- 4. Write a program to perform conversion of decimal to binary.
- 5. Write a program to find positive numbers from array of integers.

# **Text Book:**

"VB.NET" by P.Radhaganesan, Scitech Publications.

# **Web Resources:**

https://www.tutorialspoint.com/compile\_vb.net\_online.php

https://onecompiler.com/vb

https://www.includehelp.com/dot-net/find-positive-numbers-from-array-of-integers-

using-c-sharp-program.aspx

# **Course Designer**

Mrs G.Nalini



(For those joined B.Sc. Computer Science on or after June 2020)

**Programme Code: UCS** 

| Course code  | Course Title     | Category                | L | Т | P | Credit |
|--------------|------------------|-------------------------|---|---|---|--------|
| UCS20SE51/61 | JQuery Scripting | Skill Enhanced Elective | - | - | 2 | 2      |

L-Lecture T-Tutorial P-Practical

| Yea | r | Semester | Internal | External | Total |
|-----|---|----------|----------|----------|-------|
| III |   | V/VI     | 15       | 35       | 50    |

#### Preamble

This course provides the conceptual and technological developments in the field of front end user interface web designing.

#### **Course Outcomes**

On the completion of the course the student will be able to

| #   | Course Outcome                                          | Expected<br>Proficiency | Expected<br>Attainment |
|-----|---------------------------------------------------------|-------------------------|------------------------|
| CO1 | Implement the concept of traversal functions            | 65%                     | 60%                    |
| CO2 | Finding element selection and filtering selections      | 65%                     | 60%                    |
| CO3 | JQuery CSS elements positioning and manipulations       | 65%                     | 60%                    |
| CO4 | Adding animation to a web page using effects and events | 65%                     | 60%                    |
| CO5 | Implement AJAX functionalities with JQuery              | 65%                     | 60%                    |

# **Mapping of COs with PSOs**

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----|------|------|------|------|------|
| CO1 | S    | S    | S    | S    | M    |
| CO2 | S    | S    | S    | S    | S    |
| CO3 | S    | S    | S    | M    | S    |
| CO4 | S    | S    | M    | S    | S    |
| CO5 | M    | M    | M    | S    | S    |

S-STRONG

**M-MEDIUM** 

L-LOW

|                 | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----------------|-----|-----|-----|-----|-----|-----|
| CO1             | S   | M   | L   | M   | M   | M   |
| CO <sub>2</sub> | L   | -   | S   | L   | S   | S   |
| CO3             | M   | L   | L   | -   | M   | -   |
| CO4             | -   | -   | M   | L   | L   | M   |
| CO5             | S   | S   | L   | M   | S   | S   |

S-STRONG M-MEDIUM L-LOW

#### Content

- 1. Script to implement the concept of traversal functions.
- 2. Finding an element siblings
- 3. Filtering Selections
- 4. JQuery CSS Positioning elements.
- 5. JQuery CSS Manipulations.
- 6. Adding animation to a web page using effects.
- 7. Working with events
- 8. Ajax with JQuery
- 9. Implement JQuery get and getJson method.
- 10. Helper methods.

#### **Web Resources**

- 1. <a href="https://www.voutube.com/watch?v=Rkvn">https://www.voutube.com/watch?v=Rkvn</a> MA04fo
- 2. https://www.voutube.com/watch?v=i32p6HvYC1A
- 3. https://www.voutube.com/watch?v=OhO4m5g2fhA

#### **Course Designer:**

Mr.J.Prakash

# THIAGARAJAR COLLEGE, MADURAI - 9. (Re-Accredited with "A++" Grade by NAAC) DEPARTMENT OF COMPUTER SCIENCE

(For those joined B.Sc. Computer Science on or after June 2020)

**Programme Code: UCS** 

| Course code  | Course Title    | Category                | L | T | P | Credit |
|--------------|-----------------|-------------------------|---|---|---|--------|
| UCS20SE51/61 | XML Programming | Skill Enhanced Elective | - | - | 2 | 2      |

L – Lecture T – Tutorial P – Practical

| Year | Semester | Internal | External | Total |
|------|----------|----------|----------|-------|
| III  | V/VI     | 15       | 35       | 50    |

### Preamble

This course enables the students to create XML-based schemas and learn to apply transformations using extensible Style sheet Language (XSL). The course examines the wide range of application in XML in DTD creation, schema creation and parsing XML document.

### **Course Outcomes:**

On the completion of the course the student will be able to

| #   |                                                                           | Expected    | Expected   |
|-----|---------------------------------------------------------------------------|-------------|------------|
|     | Course                                                                    | Proficiency | Attainment |
|     | Outcome                                                                   |             |            |
| CO1 | Create well-formed XML documents.                                         | 65%         | 60%        |
|     | Construct programs to import and export the XML documents in the database | 65%         | 60%        |
| CO3 | Create XML schemas, XSTL and import, export DTD.                          | 65%         | 60%        |
| CO4 | Develop XML document and parse it using DOM                               | 65%         | 60%        |
| CO5 | Create XML document and parse it using SAX parser.                        | 65%         | 60%        |

### **Mapping of Cos with PSOs**

|     | PSO1 | PSO2    | PSO3 | PSO4 | PSO5 |
|-----|------|---------|------|------|------|
| CO1 | S    | M       | L    | M    | L    |
| CO2 | M    | ${f L}$ | S    | S    | -    |
| CO3 | L    | M       | L    | M    | L    |
| CO4 | -    | -       | L    | L    | S    |
| CO5 | M    | L       | M    | S    | M    |

S-STRONG M-MEDIUM L-LOW

### **Mapping of Cos with POs**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | S   | M   | L   | M   | M   | M   |
| CO2 | L   | -   | S   | L   | S   | S   |
| CO3 | M   | L   | L   | -   | M   | -   |
| CO4 | -   | -   | M   | L   | L   | M   |
| CO5 | S   | S   | L   | M   | S   | S   |

S-STRONG M-MEDIUM L-LOW

### Content

1. XML document creation.

- a) Create XML file that contains the student assessment details (Roll no, Name and marks).
- b) Create XML file to contain the book details.
- 2. Internal and External DTD creation.

Create a DTD capturing the document type.

- 3. XSL Transformation.
  - a) Create a CSS stylesheet to display the XML data.
  - b) Link the XSL Style Sheet to the XML Document
- 4. XML Schema creation.
- 5. Importing and Exporting XML document in database
  - a) Import XML data as a binary byte stream
  - b) Import XML data in an existing row
  - c) Importing XML data from a file that contains a DTD
  - d) Specifying the field terminator explicitly using a format file
- 6. Export XML data
- 7. Parsing XML document using DOM/SAX parser.

### **Text Book**

"Web Technology" – N.P.GOPALAN, J.AKILANDESWARI

### Web Resources

https://jsonformatter.org/xml-editor

https://www.tutorialspoint.com/online\_xml\_editor.htm

https://www.w3schools.com/xml/

### **Web Resources**

Mrs. G.Nalini

# B.Sc., Computer Science with Cognitive Systems

**Programme Code - UCG** 



## THIAGARAJAR COLLEGE (AUTONOMOUS) :: MADURAI – 09 (Re-Accredited with "A++" Grade by NAAC)

### DEPARTMENT OF COMPUTER SCIENCE

(For those joined B.Sc. Computer Science with Cognitive Systems on or after June 2020)

|                       | V SEMESTER |                                     |            |      |              |     |      |     |  |  |
|-----------------------|------------|-------------------------------------|------------|------|--------------|-----|------|-----|--|--|
| Course                | Code No.   | Title of the paper                  | Hrs/<br>wk | Crd. | Total<br>Hrs |     | Mark | S   |  |  |
|                       |            |                                     |            |      |              | CIA | SE   | TOT |  |  |
| Core 10               | UCG20C51   | Software Testing                    | 5          | 5    | 75           | 25  | 75   | 100 |  |  |
| Core 11               | UCG20C52   | IT Cognition and Problem Solving    | 5          | 5    | 75           | 25  | 75   | 100 |  |  |
| Core Lab 11           | UCG20CL51  | Practical - Software Testing<br>Lab | 5          | 3    | 75           | 40  | 60   | 100 |  |  |
| Core Elective 1       | UCG20CE51  | Options given                       | 5          | 5    | 75           | 25  | 75   | 100 |  |  |
| Core Elective<br>Lab1 | UCG20CEL51 | Options given                       | 5          | 3    | 75           | 40  | 60   | 100 |  |  |
| SEC I                 | UCG20SE51  | Practical- DevOps Tools Lab         | 5          | 2    | 75           | 15  | 35   | 50  |  |  |
| Total                 |            |                                     | 30         | 23   |              |     |      | 550 |  |  |
|                       | UCG20IN    | Internship                          |            | 2    |              | 15  | 35   | 50  |  |  |

|                 | VI SEMESTER |                                |    |      |              |       |    |     |  |  |
|-----------------|-------------|--------------------------------|----|------|--------------|-------|----|-----|--|--|
| Course          | Code No.    | Title of the paper             |    | Crd. | Total<br>Hrs | Marks |    |     |  |  |
| Course          | Coue No.    | Tiue of the paper              | wk | Ciu. | 1113         | CIA   | SE | TOT |  |  |
| Core 12         | UCG20C61    | R- Programming                 | 4  | 4    | 60           | 25    | 75 | 100 |  |  |
| Core 13         | UCG20C62    | Digital Technology             | 5  | 5    | 75           | 25    | 75 | 100 |  |  |
| Core lab 12     | UCG20CL61   | Practical- R Programming Lab   | 4  | 2    | 60           | 40    | 60 | 100 |  |  |
| Core Elective 2 | UCG20CE61   | Options given                  | 5  | 5    | 75           | 25    | 75 | 100 |  |  |
| SEC II          | UCG20SE61   | Practical - Web Technology Lab | 4  | 2    | 60           | 15    | 35 | 50  |  |  |
| Project         | UCG20PJ61   | Project & Viva Voce            |    | 5    | 120          | 25    | 75 | 100 |  |  |
| Part V          |             |                                |    | 1    |              |       |    |     |  |  |
| Total           |             |                                | 30 | 24   |              |       |    | 550 |  |  |

### **List of Electives**

### **Core Elective - I**

- Open Source Technology
- Cryptography and network security

### **Core Elective Lab - I**

- Practical Open Source Technology Lab
- Practical Cryptography and network security Lab

### **Core Elective – II**

- Data Mining
- Big Data Analytics

(Re-Accredited with 'A++' Grade by NAAC)

### DEPARTMENT OF COMPUTER SCIENCE

(For those who joined B.Sc. Computer Science with Cognitive Systems on or after June 2020)

Programme Code: UCG

| Course code | Course Title     | Category | L | Т | P | Credit |
|-------------|------------------|----------|---|---|---|--------|
| UCG20C51    | Software Testing | Core 10  | 5 | - | - | 5      |

L-Lecture T- Tutorial P-Practical

| Year | Semester | Internal | External | Total |
|------|----------|----------|----------|-------|
| III  | V        | 25       | 75       | 100   |

### **Preamble**

Software testing is the process of evaluating and verifying that a software product or application does what it is supposed to do. The benefits of testing include preventing bugs, reducing development costs and improving performance.

### **Course Outcomes**

On the completion of the course the student will be able to:

| #   | Course Outcome                                                               | Expected<br>Proficiency<br>(%) | Expected<br>Attainment<br>(%) |
|-----|------------------------------------------------------------------------------|--------------------------------|-------------------------------|
| CO1 | Introduction on Automation and Selenium components.                          | 65                             | 60                            |
| CO2 | Managing User Interface controls and Creation of Selenium Web Driver Script. | 65                             | 60                            |
| CO3 | Exploring features of web drivers and introducing selenium methods.          | 65                             | 60                            |
| CO4 | Working with dynamic UI Objects, Selenium functions and testing methods.     | 65                             | 60                            |
| CO5 | Understanding Selenium Grid, Reporting and Batch Execution in Selenium.      | 65                             | 60                            |

**Mapping of COs with PSOs** 

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----|------|------|------|------|------|
| CO1 | M    | L    | -    | -    | M    |
| CO2 | S    | M    | L    | -    | L    |
| CO3 | L    | L    | M    | M    | S    |
| CO4 | S    | M    | -    | M    | -    |
| CO5 | S    | S    | L    | M    | -    |

|     | PO1 | PO2 | PO3 | PO4 | PO5          | PO6 |
|-----|-----|-----|-----|-----|--------------|-----|
| CO1 | -   | L   | M   | L   | -            | •   |
| CO2 | M   | L   | •   | L   | $\mathbf{L}$ | ı   |
| CO3 | L   | M   | L   | M   | S            | M   |
| CO4 | M   | S   | M   | S   | S            | -   |
| CO5 | S   | S   | -   | S   | S            | S   |

S-STRONG M-MEDIUM L-LOW

### **Blooms taxonomy**

|                 | C     | End of |          |
|-----------------|-------|--------|----------|
|                 | First | Second | Semester |
| Knowledge - K1  | 40%   | 40%    | 40%      |
| Understand - K2 | 40%   | 40%    | 40%      |
| Apply - K3      | 20%   | 20%    | 20%      |

### Content

Unit - I 15 HOURS

Introduction to Automation - Planning before Automation - Introduction to Selenium - Installing Selenium Components.

Unit - II 15 HOURS

Using Selenium IDE - Managing User Interface Controls - Basics of Java- Creating First Selenium Web Driver Script.

Unit - III 15 HOURS

Selenium Methods: Common Selenium Web Driver Methods - Verification Point in Selenium - Exploring the Features of Web Driver.

Unit - IV 15 HOURS

Handling Pop-up Dialogs and Multiple Windows - Working with Dynamic UI Objects- Data driven testing using TestNG - Selenium Functions, Common Questions and Tips.

Unit - V 15 HOURS

Reporting in Selenium - Batch Execution- Automation Frameworks - Understanding Selenium Grid.

### **Text Books**

- 1. AdithyaGarg, Ashish Mishra "A Practitioner's Guide to Test Automation Using Selenium", Tata McGraw Hill Education, 2015.
- 2. NavneeshGarg, "Test Automation Using Selenium WebDriver with Java", AdactIn Group Pvt Ltd. 2014.

### **Chapters (Relevant Topics only)**

Unit - I : 1, 3, 4, 5 (from book 2)

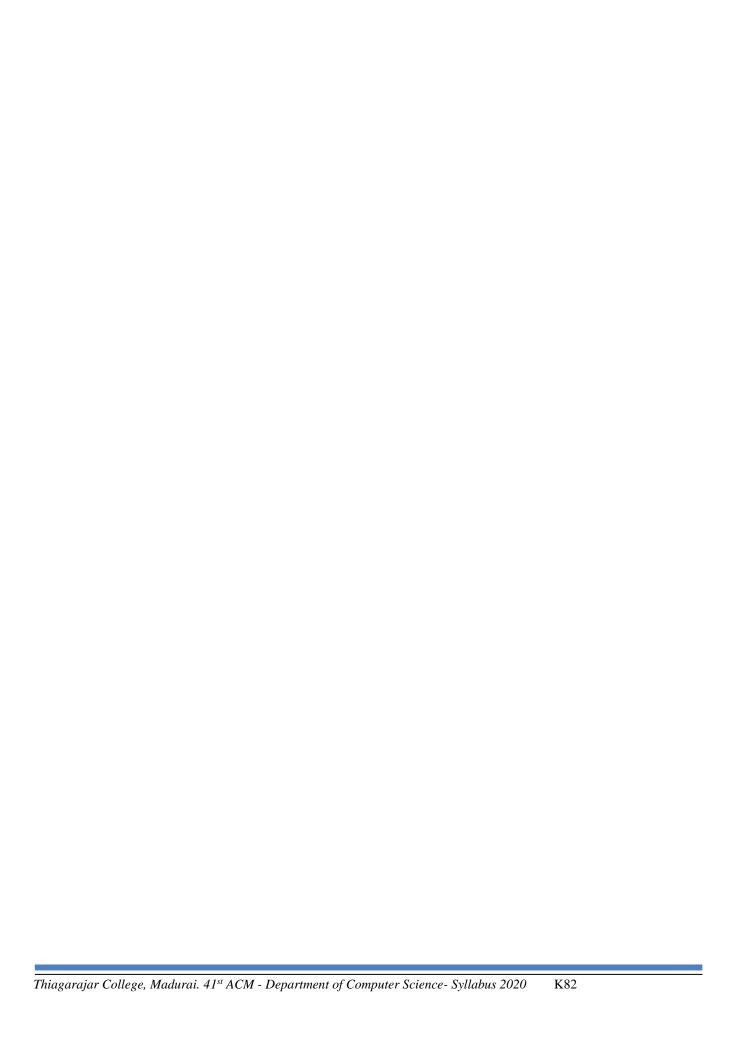
Unit - II : 6, 7, 8, 9 (from book 2)

Unit - III : 10, 12 (from book 2)

Unit - IV : 19 (from book 1) and 18, 19, 27 (from book 2)

Unit - V : 20 (from book 1) and 23, 24, 26 (from book 2)

### **Reference Books**


- 1. SatyaAvasarala, "Selenium Web Driver Practical Guide", Packt Publishing, 2014.
- 2. David Burns," Selenium 1.0 Testing Tools", Packt Publishing, 2010.
- 3. Rex Allen Jones II, "Selenium Web Driver for Functional Automation Testing", Test 4 Success, LLC. 2016.

### **Web Resources**

- 1. https://bigclasses.com/blog/features-of-selenium-webdriver
- 2. <a href="https://artoftesting.com/data-driven-framework-in-selenium-using-testing">https://artoftesting.com/data-driven-framework-in-selenium-using-testing</a>
- 3. https://blog.testproject.io/2019/11/14/data-driven-testing-with-testng/
- 4. https://www.guru99.com/introduction-to-selenium-grid.html

### **Course designer**

### Dr.A.Sharmista



(Re-Accredited with 'A++' Grade by NAAC)

### DEPARTMENT OF COMPUTER SCIENCE

### **B.Sc. Computer Science with Cognitive Systems**

(For those who joined B.Sc. Computer Science on or after June 2020)

**Programme Code: UCG** 

| Course code | Course<br>Title | Category | L | T | P | Credit |
|-------------|-----------------|----------|---|---|---|--------|
| UCG20C52    | IT Cognition    | Core 11  | 5 | - | - | 5      |
|             | and Problem     |          |   |   |   |        |
|             | Solving         |          |   |   |   |        |

L – Lecture T – Tutorial P – Practical

| Year | Semester | Internal | External | Total |
|------|----------|----------|----------|-------|
| III  | V        | 25       | 75       | 100   |

### **Preamble**

This Course is designed to enable the students to know the concepts of cognitive process and to endow the learners with the skills required for virtual relationship and cultural sensitivity.

### **Course Outcomes**

On the successful completion of this course, Students will be able to:

| #   | Course Outcome                                        | Expected        | Expected    |
|-----|-------------------------------------------------------|-----------------|-------------|
|     |                                                       | Proficiency (%) | Outcome (%) |
| CO1 | Outline the concept of Cognitive Process              | 65              | 60          |
| CO2 | Overview of Perpetual Process                         | 65              | 60          |
| CO3 | Classify factors affecting memory                     | 65              | 60          |
| CO4 | Resolve different types of problem solving techniques | 65              | 60          |
| CO5 | Outline different skills of thinking                  | 65              | 60          |

### **Mapping of COs with PSOs**

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----|------|------|------|------|------|
| CO1 | S    | L    | M    | M    | M    |
| CO2 | S    | M    | S    | M    | S    |
| CO3 | L    | M    | M    | S    | S    |
| CO4 | M    | M    | S    | M    | M    |
| CO5 | S    | S    | S    | M    | S    |

|     | PO1 | PO2     | PO3 | PO4 | PO5 | PO6 |
|-----|-----|---------|-----|-----|-----|-----|
| CO1 | M   | ${f L}$ | M   | M   | L   | M   |
| CO2 | M   | M       | M   | M   | M   | S   |
| CO3 | M   | M       | S   | S   | S   | S   |
| CO4 | M   | S       | M   | S   | M   | M   |
| CO5 | M   | S       | M   | S   | M   | S   |

S-STRONG M-MEDIUM L-LOW

### **Blooms taxonomy**

|                 | C     | End of |          |
|-----------------|-------|--------|----------|
|                 | First | Second | Semester |
| Knowledge - K1  | 40%   | 40%    | 40%      |
| Understand - K2 | 40%   | 40%    | 40%      |
| Apply - K3      | 20%   | 20%    | 20%      |

### Content

Unit - I 10 HOURS

Introduction to Cognition: Meaning, cognitive processes, Development of cognitive psychology

Unit - II 16 HOURS

Perceptual Processes; Attention: Divided attention, Selective Attention, Visual attention and auditory attention. Consciousness: Varieties, Subliminal Perception. Visual Perception Perceptual Organizational Processes, Multisensory interaction and Integration: Synthesis, Comparing the senses, Perception and Action.

Unit - III 16 HOURS

Memory- Working Memory: Factors affecting the capacity of working Memory. Long Term Memory: Encoding and Retrieval in Long Term Memory, Autobiographical Memory. Memory Strategies: Practice, Mnemonics using Imagery, Mnemonics using organization. Meta cognition: Meta memory, TOT, Meta comprehension.

Unit - IV 18 HOURS

Problem Solving, Reasoning and Decision Making: VUCA World Problem Solving, Types of problems, Factors that influence Problem Solving, creativity. Reasoning: Inductive and Deductive Reasoning. Decision Making: Heuristics in decision making, representativeness, availability and Anchoring and adjustment. The framing effect, Overconfidence in decisions, The Hindsight Bias.

Unit - V 15 HOURS

Future Skills: Critical thinking, Adaptive thinking, Cognitive Load Management, Design thinking, Virtual Collaboration and Cultural Sensitivity

### **Text Books**

- 1. Matlin M.W. (2003) 'Cognition' 5th Edition, Wiley Publication.
- 2. Riegler, B.R., Reigler, G.L. (2008), Cognitive Psychology Applying the Science of Mind. 2nd Edition, Pearson Education.
- 3. Benjafield J G (2007). 'Cognition' 3rd Edition. Oxford University Press.
- 4. Goldstein B.E. (2008) 'Cognitive Psychology' 2nd Edition, Wadsworth

### **Web Resources**

- 1.https://sjsu.edu/people/mark.vanselst/courses/p135/s1/Kellogg\_c1\_fall2013.pdf
- 2.https://jvapartners.com/problem-solving-and-decision-making-in-a-vuca-environment/
- 3.https://plato.stanford.edu/entries/critical-thinking/
- 4.https://www.youtube.com/watch?v=VcaAVWtP48A (Cognitive Psychology)
- 5.https://www.youtube.com/watch?v=lVt19m3hUCM (Reasoning and Decision Making)

### **Course Designer**

Mr. J.Prakash



(Re-Accredited with 'A++' Grade by NAAC)

### DEPARTMENT OF COMPUTER SCIENCE

(For those who joined B.Sc. Computer Science with Cognitive Systems on or after June 2020)

Programme Code: UCG

| Course code | Course Title                        | Category    | L | T | P | Credit |
|-------------|-------------------------------------|-------------|---|---|---|--------|
| UCG20CL51   | Practical - Software<br>Testing Lab | Core Lab 11 | - | - | 5 | 3      |

L – Lecture T – Tutorial P – Practical

| Year | Semester | Internal | External | Total |
|------|----------|----------|----------|-------|
| III  | V        | 40       | 60       | 100   |

### **Preamble**

This course provides the knowledge of identifying the correctness and quality of software program using software testing methodology.

### **Course Outcomes**

On the completion of the course the student will be able to:

| #               | Course Outcome                                              | Expected<br>Proficiency<br>(%) | Expected<br>Attainment<br>(%) |
|-----------------|-------------------------------------------------------------|--------------------------------|-------------------------------|
| CO1             | Analyze the Test cases for controls and test data in a file | 70                             | 65                            |
| CO <sub>2</sub> | Perform Manual testing process                              | 70                             | 65                            |
| CO <sub>3</sub> | Test a webpage                                              | 70                             | 65                            |
| CO4             | Test a HTML File                                            | 70                             | 65                            |
| CO5             | Perform Data Driven Wizard testing                          | 70                             | 65                            |

### **Mapping of COs with PSOs**

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----|------|------|------|------|------|
| CO1 | S    | S    | M    | M    | M    |
| CO2 | M    | S    | S    | S    | M    |
| CO3 | S    | M    | M    | M    | S    |
| CO4 | M    | S    | M    | M    | S    |
| CO5 | S    | M    | M    | S    | M    |

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | M   | L   | M   | M   | M   | S   |
| CO2 | M   | L   | M   | L   | L   | M   |
| CO3 | M   | L   | M   | L   | L   | M   |
| CO4 | M   | M   | M   | S   | M   | S   |
| CO5 | M   | L   | M   | S   | M   | S   |

**M-MEDIUM** 

L-LOW

### **Content**

11. Write a test case based on controls

**S-STRONG** 

- 12. Test a data in a flat file
- 13. Test program to select number of students who have scored more than 60 in any one subject
- 14. Write and test a program to login a specific web page
- 15. Test a HTML File
- 16. Test a Program in MS Excel for Data Driven Wizard

### **Web Resource**

https://www.softwaretestingmaterial.com/manual-testing-tutorial/

### **Course Designer**

Dr.G.Rakesh

(Re-Accredited with 'A++' Grade by NAAC)

### DEPARTMENT OF COMPUTER SCIENCE

(For those who joined B.Sc. Computer Science with Cognitive Systems on or after June 2020)

Programme Code: UCG

| Course code | Course Title                 | Category | L | T | P | Credit |
|-------------|------------------------------|----------|---|---|---|--------|
| UCG20SE51   | Practical - DevOps Tools Lab | SEC I    | - | - | 5 | 2      |

L – Lecture T – Tutorial P – Practical

| Year | Semester | Internal | External | Total |
|------|----------|----------|----------|-------|
| III  | V        | 15       | 35       | 50    |

### **Preamble**

This course provides the knowledge of various DevOps tools' usage in all the stages of Software development life cycle process in IT industry.

### **Course Outcomes**

On the completion of the course the student will be able to:

| #   | Course Outcome                                                         | Expected Proficiency (%) | Expected<br>Attainment<br>(%) |
|-----|------------------------------------------------------------------------|--------------------------|-------------------------------|
| CO1 | Push and Pull code using Git and Github                                | 70                       | 65                            |
| CO2 | Create EC2 instance by IAAS using Terraform                            | 70                       | 65                            |
| CO3 | Build and deploy war file using Jenkins                                | 70                       | 65                            |
| CO4 | Create and deploy Docker image on Docker container                     | 70                       | 65                            |
| CO5 | Deploy a war file by creating Jenkins job using Ansible and Kuberentes | 70                       | 65                            |

### **Mapping of COs with PSOs**

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----|------|------|------|------|------|
| CO1 | M    | S    | S    | S    | M    |
| CO2 | M    | M    | S    | S    | S    |
| CO3 | S    | S    | S    | M    | S    |
| CO4 | S    | S    | S    | S    | S    |
| CO5 | S    | M    | M    | S    | M    |

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | M   | L   | L   | L   | L   | M   |
| CO2 | M   | M   | M   | M   | M   | S   |
| CO3 | M   | L   | M   | S   | S   | S   |
| CO4 | M   | M   | M   | S   | M   | S   |
| CO5 | M   | M   | M   | S   | S   | S   |

S-STRONG M-MEDIUM L-LOW

### **Content**

- 1. Push and Pull code using Git into Github.
- 2. Create an EC2 Instance using Terraform.
- 3. Install Jenkins on AWS EC2 instance.
- 4. Pull a sample Java project from GitHub and build the code using Jenkins.
- 5. Deploy a war file on Tomcat VM using Jenkins.
- 6. Create Docker Image creation and push it to the Docker Hub.
- 7. Deploy a Docker image on Docker container.
- 8. Create Jenkins job to deploy a war file on Docker using Ansible.
- 9. Deploy a web application using Kubernetes.

### **Web Resources**

- 1. https://www.youtube.com/watch?v=RA1mNClGYJ4
- 2. https://www.youtube.com/watch?v=G\_UCeeb5EPc
- 3. https://www.youtube.com/watch?v=EIHY\_CY5J0k
- 4. https://www.youtube.com/watch?v=73GauOmOzV4
- **5.** <a href="https://www.youtube.com/watch?v=XQNNAeyMAkk">https://www.youtube.com/watch?v=XQNNAeyMAkk</a>

### **Course Designer**

### Mr.J.Prakash

(Re-Accredited with 'A++' Grade by NAAC)

### DEPARTMENT OF COMPUTER SCIENCE

(For those who joined B.Sc. Computer Science with Cognitive Systems on or after June 2020)

Programme Code: UCG

| Course code | Course Title  | Category | L | T | P | Credit |
|-------------|---------------|----------|---|---|---|--------|
| UCG20C61    | R-Programming | Core 12  | 4 | - | - | 4      |

L – Lecture

T – Tutorial

P - Practical

| Year | Semester | Internal | External | Total |
|------|----------|----------|----------|-------|
| III  | VI       | 25       | 75       | 100   |

### **Preamble**

This Course demonstrate statistical programming language ability with different category of functionality in libraries.

### **Course Outcomes**

On the completion of the course the student will be able to

| #   | Course Outcome                                            | Expected Proficiency (%) | Expected Attainment (%) |
|-----|-----------------------------------------------------------|--------------------------|-------------------------|
| CO1 | Basics of R environment and R Commands                    | 65                       | 60                      |
| CO2 | Demonstrate vector, set and object                        | 65                       | 60                      |
| CO3 | Brief description about Arrays, matrices and data frames  | 65                       | 60                      |
| CO4 | Describe about files and functions                        | 65                       | 60                      |
| CO5 | Gain Knowledge of using Graphical procedures and packages | 65                       | 60                      |

### **Mapping of COs with PSOs**

|     | PSO1    | PSO2 | PSO3 | PSO4 | PSO5 |
|-----|---------|------|------|------|------|
| CO1 | ${f L}$ | S    | M    | M    | M    |
| CO2 | M       | S    | S    | M    | M    |
| CO3 | L       | M    | S    | M    | M    |
| CO4 | L       | M    | S    | M    | L    |
| CO5 | S       | M    | M    | M    | M    |

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | M   | L   | L   | L   | L   | M   |
| CO2 | M   | M   | M   | M   | M   | S   |
| CO3 | M   | L   | M   | S   | S   | S   |
| CO4 | M   | M   | M   | S   | M   | S   |
| CO5 | M   | M   | M   | S   | S   | S   |

S-STRONG M-MEDIUM L-LOW

### **Blooms taxonomy**

|                 | C     | End of |          |
|-----------------|-------|--------|----------|
|                 | First | Second | Semester |
| Knowledge - K1  | 40%   | 40%    | 40%      |
| Understand - K2 | 40%   | 40%    | 40%      |
| Apply - K3      | 20%   | 20%    | 20%      |

### **Content**

UNIT - I 12 HOURS

Introduction and preliminaries - The R environment - Related software and documentation - R and statistics - Using R interactively - Getting help with functions and features - R commands, case sensitivity, etc - Executing Commands from or diverting output to a file - Data permanency and removing objects Simple manipulations - numbers and vectors - Vectors and assignment - Vector arithmetic - Generating regular sequences - Logical vectors.

UNIT – II 12 HOURS

Missing values - Character vectors - Index vectors - selecting and modifying Subsets of a data set Objects, - their modes and attributes - Changing the length of an object - Getting and setting attributes - Ordered and unordered factors - The function apply () and ragged arrays - Ordered factors.

UNIT – III 12 HOURS

Arrays and matrices - Array indexing. Subsections of an array - Index matrices - The array() function - Mixed vector and array arithmetic. The recycling rule-Matrix facilities - Matrix multiplication - Lists and data frames: Lists - Constructing and modifying lists - Concatenating lists - Data frames - Making data frames - attach () and detach ().

UNIT – IV 12 HOURS

Reading data from files: The read. table () function - The scan () function Accessing built-in datasets - Loading data from other R packages - Editing data Grouping, loops and conditional

execution: Control statements: Conditional execution: if statements - Repetitive execution: for loops, - repeat and while.

UNIT – V HOURS

Graphical procedures: High-level plotting commands - The plot() function Displaying multivariate data - Display graphics - Graphics parameters list - Graphical elements - Packages - Standard packages - Contributed packages and CRAN.

### **Text Book**

An Introduction to R, Notes on R: A programming environment for Data Analysis and Graphics Version 3.4.4(2018-03-15), W.N Venables, D.M Smith and the R Core Team

### **Chapters (Relevant Topics only)**

Unit - I : 1 (1.1 - 1.11)

Unit - II : 2(2.1-2.8)

Unit - III : 5 (5.1 - 5.10) and 6 (6.1 - 6.3.5)

Unit - IV : 7 (7.1, 7.4)

Unit - V : 12 (12.1 – 12.7) and 13 (13.1 – 13.3)

### **Reference Books**

- 1. R for Beginners, Emmanuel Paradise.
- 2. R Programming for Data Science, Roger D peng
- 3. Chambers (2008). Software for Data Analysis, Springer.

### **Web Resources**

https://www.tutorialspoint.com/r/index.htm

### **Course Designer**

Dr. G.Rakesh



(Re-Accredited with 'A++' Grade by NAAC)

### DEPARTMENT OF COMPUTER SCIENCE

(For those who joined B.Sc. Computer Science with Cognitive Systems on or after June 2020)

Programme Code: UCG

| Course code | Course Title       | Category | L | T | P | Credit |
|-------------|--------------------|----------|---|---|---|--------|
| UCG20C62    | Digital Technology | Core 13  | 5 | - | - | 5      |

L-Lecture T- Tutorial P-Practical

| Year | Semester | Internal | External | Total |
|------|----------|----------|----------|-------|
| III  | VI       | 25       | 75       | 100   |

### **Preamble**

The course facilitates the students to construct a digital media outcome that integrates media types and incorporates original content. The specifications for the digital media outcome, software and techniques to be used need to be determined prior to the outcome being made.

### **Course Outcomes**

On the completion of the course the student will be able to:

| #   | Course Outcome                                                                                          | Expected<br>Proficiency<br>(%) | Expected Attainment (%) |
|-----|---------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------|
| CO1 | Introduction on digital primers, metaphors and Marketing. Cloud, Artificial Intelligence and big data.  | 65                             | 60                      |
| CO2 | Introduce the concept of marketing and manufacturing in banking and finance, insurance and health care. | 65                             | 60                      |
| CO3 | Acquire the knowledge on Automatix and RPA tools.                                                       | 65                             | 60                      |
| CO4 | Enrich their knowledge in Automation and Enterprise architecture.                                       | 65                             | 60                      |
| CO5 | Describe the Taskbots, MetaBots and Cognitive RPA.                                                      | 65                             | 60                      |

### **Mapping of COs with PSOs**

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----|------|------|------|------|------|
| CO1 | S    | -    | M    | M    | -    |
| CO2 | L    | -    | -    | -    | M    |
| CO3 | S    | M    | L    | L    | S    |
| CO4 | M    | -    | -    | -    | S    |
| CO5 | S    | M    | L    | -    | -    |

|     | PO1 | PO2     | PO3 | PO4 | PO5 | PO6 |
|-----|-----|---------|-----|-----|-----|-----|
| CO1 | L   | -       | M   | M   | S   | M   |
| CO2 | L   | -       | M   | L   | -   | -   |
| CO3 | S   | ${f L}$ | -   | S   | S   | M   |
| CO4 | -   | -       | M   | M   | L   | -   |
| CO5 | S   | -       | M   | S   | S   | S   |

S-STRONG

**M-MEDIUM** 

L-LOW

### **Blooms taxonomy**

| ·               | C     | End of |          |
|-----------------|-------|--------|----------|
|                 | First | Second | Semester |
| Knowledge - K1  | 40%   | 40%    | 40%      |
| Understand - K2 | 40%   | 40%    | 40%      |
| Apply - K3      | 20%   | 20%    | 20%      |

### **Content**

Unit - I 15 HOURS

Digital Primer - Why is Digital Different? - Digital Metaphors On Cloud 9 - A Small Intro to Big Data - Social Media & Digital Marketing - Artificial Intelligence - Unchain the Block chain - Internet of Everything - Immersive Technology.

Unit - II 15 HOURS

Digital for Industries - Manufacturing and Hi-tech-Banking and Financial Services - Insurance and Healthcare - Retail - Travel & Hospitality - Communications, Media & Information Services - Government.

Unit - III 15 HOURS

Automatix – Art of RPA - Introduction - Setting the Context - RPA Prelude - RPA Demystified -RPA vs BPM RPA Implementations - RPA in Industries - RPA Tools - Automatix - Art of RPA

Unit - IV 15 HOURS

Automation Anywhere - Getting Started with AA Enterprise - Exploring AA Enterprise - AA Enterprise - Architecture.

Unit - V 15 HOURS

Knowing the Bots - More About TaskBots - AA Enterprise - All About Recorders - Designers - MetaBots - Cognitive RPA.

### **Text Books**

- Richard Murdoch, "Robotic Process Automation: Guide To Building Software Robots, Automate Repetitive Tasks & Become an RPA Consultant"
- 2. Kelly Wibbenmeyer, "The Simple Implementation Guide to Robotic Process Automation (RPA): How to Best Implement RPA in an Organization"

### **Web Resources**

- 1. https://www.britannica.com/technology/artificial-intelligence
- 2. https://www.slideshare.net/saidmasoud4/hi-tech-banking
- 3. <a href="https://www.softwaretestinghelp.com/robotic-process-automation-tools/">https://www.softwaretestinghelp.com/robotic-process-automation-tools/</a>
- 4. <a href="https://www.coursehero.com/file/54165166/AA-contdocx/">https://www.coursehero.com/file/54165166/AA-contdocx/</a>
- 5. <a href="https://www.cigniti.com/blog/cognitive-robotic-process-automation-crpa/">https://www.cigniti.com/blog/cognitive-robotic-process-automation-crpa/</a>

### **Course designer**

Dr.A.Sharmista



(Re-Accredited with 'A++' Grade by NAAC)

### DEPARTMENT OF COMPUTER SCIENCE

(For those who joined B.Sc. Computer Science with Cognitive Systems on or after June 2020)

Programme Code: UCG

| Course code | Course Title                     | Category    | L | T | P | Credit |
|-------------|----------------------------------|-------------|---|---|---|--------|
| UCG20CL61   | Practical - R Programming<br>Lab | Core Lab 12 | - | - | 4 | 2      |

L – Lecture T – Tutorial P – Practical

| Year | Semester | Internal External |    | Total |  |
|------|----------|-------------------|----|-------|--|
| III  | VI       | 40                | 60 | 100   |  |

### **Preamble**

This course provides the knowledge to Design and implement R Programming language for computation process.

### **Course Outcomes**

On the completion of the course the student will be able to:

| #               | Course Outcome                             | Expected Proficiency (%) | Expected Attainment (%) |
|-----------------|--------------------------------------------|--------------------------|-------------------------|
| CO1             | Implement Vector and List Operation        | 70                       | 65                      |
| CO <sub>2</sub> | Implement Matrices Computation             | 70                       | 65                      |
| CO3             | Create Data Frame and Factor objects       | 70                       | 65                      |
| CO4             | Implement File and statistical computation | 70                       | 65                      |
| CO5             | Perform data visualization                 | 70                       | 65                      |

### **Mapping of COs with PSOs**

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----|------|------|------|------|------|
| CO1 | S    | S    | M    | M    | S    |
| CO2 | S    | S    | S    | S    | S    |
| CO3 | S    | M    | M    | M    | S    |
| CO4 | S    | S    | M    | M    | S    |
| CO5 | S    | S    | M    | M    | S    |

|     | PO1 | PO2 | PO3          | PO4 | PO5 | PO6          |
|-----|-----|-----|--------------|-----|-----|--------------|
| CO1 | S   | M   | L            | L   | L   | $\mathbf{M}$ |
| CO2 | M   | S   | $\mathbf{M}$ | M   | M   | S            |
| CO3 | M   | L   | M            | S   | S   | S            |
| CO4 | M   | S   | M            | S   | M   | S            |
| CO5 | S   | S   | M            | S   | L   | S            |

S-STRONG M-MEDIUM L-LOW

### **Content**

- 1. R Program for Vector Operation
- 2. Create a R List
- 3. Implement Matrices addition, subtraction and multiplication
- 4. Create a Data Frame
- 5. Create a Factor object
- 6. File Operations
- 7. Create a R Program for Mean, Median and mode
- 8. Draw Bar chart and Pie charts in R.

### **Web Resource**

https://www.w3schools.com/r/

### **Course Designer**

Dr.G.Rakesh

(Re-Accredited with 'A++' Grade by NAAC)

### DEPARTMENT OF COMPUTER SCIENCE

(For those who joined B.Sc. Computer Science with Cognitive Systems on or after June 2020) **Programme Code: UCG** 

| Course code | Course Title    | Category | L | Т | P | Credit |
|-------------|-----------------|----------|---|---|---|--------|
| UCG20SE61   | Practical - Web | SEC II   | - | - | 4 | 2      |
|             | Technology Lab  |          |   |   |   |        |

L – Lecture T – Tutorial P – Practical

| Year | Semester | Internal | External | Total |
|------|----------|----------|----------|-------|
| III  | VI       | 15       | 35       | 50    |

### **Preamble**

This course provides the conceptual and technological developments in the field of front end user interface web designing.

### **Course Outcomes**

On the completion of the course the student will be able to:

| #   | Course Outcome                                                                    | Expected<br>Proficiency<br>(%) | Expected<br>Attainment<br>(%) |
|-----|-----------------------------------------------------------------------------------|--------------------------------|-------------------------------|
| CO1 | Develop HTML scripts using text formatting, table creation and frame arrangements | 70                             | 65                            |
| CO2 | Design CSS Positioning and different types of style sheets                        | 70                             | 65                            |
| CO3 | Implement DOM and validating form elements using JavaScript                       | 70                             | 65                            |
| CO4 | Angular application development using TypeScript                                  | 70                             | 65                            |
| CO5 | User Interface development using ReactJS                                          | 70                             | 65                            |

### **Mapping of COs with PSOs**

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----|------|------|------|------|------|
| CO1 | S    | S    | S    | S    | M    |
| CO2 | M    | S    | S    | S    | S    |
| CO3 | S    | S    | S    | M    | S    |
| CO4 | S    | S    | S    | S    | S    |
| CO5 | S    | M    | M    | S    | S    |

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | M   | L   | M   | M   | L   | M   |
| CO2 | M   | S   | M   | M   | M   | S   |
| CO3 | M   | L   | M   | S   | S   | S   |
| CO4 | M   | M   | S   | S   | M   | S   |
| CO5 | M   | L   | M   | S   | L   | S   |

S-STRONG M-MEDIUM L-LOW

### **Content**

### **HTML and CSS**

- 1. Create some links to various search engines.
- 2. Display various types of Lists.
- 3. Display content using headers, subscript and superscript tags.
- 4. Create table with spanning attributes.
- 5. Display content in web page using frames.
- 6. CSS Absolute and relative positioning
- 7. CSS different types of style sheets.

### **JavaScript**

- 1. Program to perform arithmetic operations.
- 2. Program to print Fibonacci series.
- 3. Program to check whether a given number is prime or not.
- 4. Changing the Background Color of a Web Page Using JavaScript Dom.
- 5. Validating Html Form Elements Using JavaScript.

### **Angular TS**

- 1. Components creation and do routing process.
- 2. Create Login and register page using local storage with JSON.
- 3. Create a form using "Angular forms."

### React JS

- 1. Create a program using class, arrow function, variables
- 2. Create a sample program using Functional Component
- 3. Create a sample program using Class Component
- 4. Create a program using Multiple class Component
- 5. Create a program by passing **Props** from one component to another component

- 6. Create a program by using React State.
- 7. Create a program by implementing the Life Cycle of React
- 8. Implementing the Styling Inline, Internal, External
- 9. Event handling implementation in ReactJS.
- 10. Create a program by using a **ReactJS Hooks**
- 11. Implementing the **Routing** concept in ReactJS
- 12. Create a simple Login form page using React and Routing
- 13. Validating the Login form

### Web Resources

- 1. <a href="https://www.youtube.com/watch?v=QMnv3QrjZoU">https://www.youtube.com/watch?v=QMnv3QrjZoU</a>
- 2. https://www.youtube.com/watch?v=W6NZfCO5SIk
- 3. <a href="https://www.youtube.com/watch?v=WBPrJSw7yQA">https://www.youtube.com/watch?v=WBPrJSw7yQA</a>
- 4. <a href="https://www.youtube.com/watch?v=fSp2C7QPH8M">https://www.youtube.com/watch?v=fSp2C7QPH8M</a>

### **Course Designer**

Mr.J.Prakash



(Re-Accredited with 'A++' Grade by NAAC)

### DEPARTMENT OF COMPUTER SCIENCE

(For those who joined B.Sc. Computer Science with Cognitive Systems on or after June 2020) **Programme Code: UCG** 

| Course code | Course Title           | Category        | L | Т | P | Credit |
|-------------|------------------------|-----------------|---|---|---|--------|
| UCG20CE51   | Open Source Technology | Core Elective 1 | 5 | - | - | 5      |

L – Lecture T – Tutorial P – Practical

| Year | Semester | Internal | External | Total |
|------|----------|----------|----------|-------|
| III  | V        | 25       | 75       | 100   |

### Preamble

This Course used to understand the difference between open-source software and commercial software. It is used for development of web application using open-source technology.

### **Course Outcomes**

On the completion of the course the student will be able to

| #   | Course Outcome                                            | Expected<br>Proficiency<br>(%) | Expected<br>Outcome<br>(%) |
|-----|-----------------------------------------------------------|--------------------------------|----------------------------|
| CO1 | Understand the basic of open-source software              | 65                             | 60                         |
| CO2 | Elaborate Linux with essential processing                 | 65                             | 60                         |
| CO3 | Demonstrate APACHE working process.                       | 65                             | 60                         |
| CO4 | Describe about open source MYSQL with commands            | 65                             | 60                         |
| CO5 | Apply PHP scripting for open source technology processing | 65                             | 60                         |

### **Mapping of COs with PSOs**

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----|------|------|------|------|------|
| CO1 | S    | L    | M    | L    | M    |
| CO2 | S    | M    | M    | L    | L    |
| CO3 | M    | M    | S    | M    | M    |
| CO4 | L    | M    | S    | L    | M    |
| CO5 | L    | S    | S    | L    | M    |

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | M   | L   | M   | M   | L   | M   |
| CO2 | M   | S   | M   | M   | M   | S   |
| CO3 | M   | L   | M   | S   | S   | S   |
| CO4 | M   | M   | S   | S   | M   | S   |
| CO5 | M   | L   | M   | S   | L   | S   |

S-STRONG M-MEDIUM L-LOW

### **Blooms taxonomy**

|            | (     | CA     |                 |
|------------|-------|--------|-----------------|
|            | First | Second | End of Semester |
| Knowledge  | 40%   | 40%    | 40%             |
| Understand | 40%   | 40%    | 40%             |
| Apply      | 20%   | 20%    | 20%             |

### Content

UNIT I 15 HOURS

### **INTRODUCTION:**

Introduction to Open Source – Open Source vs. Commercial Software – What is Linux? - Free Software – Where I can use Linux? Linux Kernel – Linux Distributions

UNIT II 15 HOURS LINUX:

Introduction to Linux Essential Commands - Filesystem Concept - Standard Files, The Linux Security Model - Vi Editor - Partitions creation - Shell Introduction, String Processing - Investigating and Managing Processes - Network Clients - Installing Application

UNIT III 15 HOURS APACHE:

Apache Explained - Starting, Stopping, and Restarting Apache - Modifying the Default Configuration - Securing Apache - Set User and Group - Consider Allowing Access to Local Documentation - Don't Allow public html Web sites - Apache control with .htaccess

UNIT IV 15 HOURS MYSOL:

Introduction to MYSQL - The Show Databases and Table - The USE command - Create Database and Tables - Describe Table - Select, Insert, Update, and Delete statement - Some Administrative detail - Table Joins - Loading and Dumping a Database.

UNIT V 15 HOURS PHP:

Introduction- General Syntactic Characteristics - PHP Scripting - Commenting your code - Primitives, Operations and Expressions - PHP Variables - Operations and Expressions Control Statement - Array - Functions - Basic Form Processing - File and Folder Access - Cookies - Sessions - Database Access with PHP - MySQL - MySQL Functions - Inserting Records - Selecting Records - Deleting Records - Update Records.

### **Text Book**

James Lee and Brent Ware, "Open Source Web Development with LAMP using Linux, Apache, MySQL, Perl and PHP", , Dorling Kindersley(India) Pvt. Ltd, 2008.

### **Chapters (Relevant Topics only)**


Unit – I : Chapter 1
Unit – II : Chapter 2
Unit – III : Chapter 3
Unit – IV : Chapter 5
Unit – V : Chapter 12

### **Web Resources**

- 1. https://www.javatpoint.com/linux-tutorial
- 2. <a href="https://www.guru99.com/apache.html">https://www.guru99.com/apache.html</a>
- 3. https://www.tutorialspoint.com/mysql/index.htm
- 4. https://www.w3schools.com/php/

### **Course Designers**

- 1. Dr. G.Rakesh
- 2. Mr J.Prakash



# THIAGARAJAR COLLEGE, MADURAI - 9.

(Re-Accredited with 'A++' Grade by NAAC)

## DEPARTMENT OF COMPUTER SCIENCE

(For those who joined B.Sc. Computer Science with Cognitive Systems on or after June 2020) **Programme Code: UCG** 

| Course code | Course Title             | Category   | L   | T | P | Credits |
|-------------|--------------------------|------------|-----|---|---|---------|
| UCG20CE51   | Cryptography and network | Core       | 5 - |   |   | 5       |
| OCG20CE31   | security                 | Elective 1 | 3   |   |   | 3       |

L-Lecture T-Tutorial P-Practical

| Year | Semester | Internal | External | Total |
|------|----------|----------|----------|-------|
| III  | V        | 25       | 75       | 100   |

## **Preamble**

This Course focuses towards the introduction of network security using various cryptographic algorithms.

# **Course Outcomes**

On the successful completion of the course, Students will be able to:

| #   | Course Outcome                                                                    | Expected<br>Proficiency<br>(%) | Expected<br>Attainment<br>(%) |
|-----|-----------------------------------------------------------------------------------|--------------------------------|-------------------------------|
| CO1 | Implement classical encryption techniques.                                        | 65                             | 60                            |
| CO2 | Understand and analyze block ciphers.                                             | 65                             | 60                            |
| CO3 | Acquire knowledge on Pseudorandom number generation                               | 65                             | 60                            |
| CO4 | Acquire knowledge about public key cryptography and Cryptographic hash functions. | 65                             | 60                            |
| CO5 | Discuss the Electronic Mail Security and IP Security                              | 65                             | 60                            |

# **Mapping of COs with PSOs**

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----|------|------|------|------|------|
| CO1 | S    | S    | L    | M    | M    |
| CO2 | S    | M    | M    | S    | M    |
| CO3 | M    | S    | S    | M    | S    |
| CO4 | M    | M    | M    | M    | M    |
| CO5 | S    | S    | M    | S    | S    |

S - STRONG M - MEDIUM L – LOW

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | S   | M   | S   | M   | S   | S   |
| CO2 | M   | S   | M   | S   | M   | M   |
| CO3 | S   | M   | M   | S   | M   | S   |
| CO4 | M   | S   | S   | M   | S   | M   |
| CO5 | M   | S   | M   | M   | S   | S   |

S - STRONG M - MEDIUM

L-LOW

#### **Blooms taxonomy**

|                 | C     | End of |          |
|-----------------|-------|--------|----------|
|                 | First | Second | Semester |
| Knowledge - K1  | 40%   | 40%    | 40%      |
| Understand - K2 | 40%   | 40%    | 40%      |
| Apply - K3      | 20%   | 20%    | 20%      |

#### **Content**

Unit – I 15 HOURS

**Classical Encryption Techniques**: Symmetric Cipher Model - Substitution Techniques: Caesar Cipher - Monoalphabetic Ciphers - Play fair Cipher - Hill Cipher - Polyalphabetic Ciphers - one-Time Pad. Transposition Techniques - Steganography.

Unit – II 15 HOURS

**Block Ciphers and the Data Encryption Standard:** Traditional Block Cipher Structure: Stream Ciphers and Block Ciphers - The Feistel Cipher.

**Advanced Encryption Standard**: AES Structure - AES Transformation Functions — An AES Example.

Unit - III 15 HOURS

**Pseudorandom Number Generation and Stream Ciphers**: Principles of Pseudorandom Number Generation - Pseudorandom Number Generators - Pseudorandom Number Generation Using a Block Cipher - Stream Ciphers.

Unit - IV 15 HOURS

**Public-Key Cryptography and RSA:** Principles of Public-Key Cryptosystems - The RSA Algorithm.

**Cryptographic Hash Functions**: Applications of Cryptographic Hash Functions - Two Simple Hash Functions - Hash Functions Based on Cipher Block Chaining.

Unit – V 15 HOURS

Transport-Level Security: Transport Level Security - HTTPS - Secure Shell (SSH).

Email Security: Pretty good privacy.

# **Text Book**

William Stallings, Cryptography and Network Security - Principles and Practice, Pearson Education, 6<sup>th</sup> Edition, 2015

# **Chapters (Relevant Topics only)**

Unit - I : 2(2.1 - 2.3, 2.5)

Unit - II : 3 (3.1) and 5 (5.2, 5.3, 5.5)

Unit - III : 7(7.1 - 7.4)

Unit - IV : 9 (9.1, 9.2) and 11 (11.1, 11.2, 11.4)

Unit - V : 17 (17.3 – 17.5) and 19 (19.1)

## **References:**

1. William Stallings, "Network Security Essentials Applications and Standards", 2nd ed., Pearson Education, 2003.

2. Behrouz A. Foruzan, Cryptography and Network Security, Tata McGraw Hill 2007.

## **Web Resources**

- 1. https://www.tutorialspoint.com/cryptography/index.htm
- 2. https://www.geeksforgeeks.org/cryptography-and-its-types/

## **Course Designer**

Mrs.K.Vennila



# THIAGARAJAR COLLEGE, MADURAI - 9.

(Re-Accredited with 'A++' Grade by NAAC)

# DEPARTMENT OF COMPUTER SCIENCE

(For those who joined B.Sc. Computer Science with Cognitive Systems on or after June 2020) **Programme Code: UCG** 

| Course code | Course Title                  | Category            | L | Т | P | Credit |
|-------------|-------------------------------|---------------------|---|---|---|--------|
| UCG20CEL51  | Open Source<br>Technology Lab | Core Elective Lab 1 | - | - | 5 | 3      |

L – Lecture

T – Tutorial P – Practical

| Year | Semester | Internal | External | Total |
|------|----------|----------|----------|-------|
| III  | V        | 40       | 60       | 100   |

## **Preamble**

This course provides the knowledge of Open source technology usage in computational process.

# **Course Outcomes**

On the completion of the course the student will be able to

| #   | Course Outcome                     | Expected<br>Proficiency<br>(%) | Expected<br>Attainment<br>(%) |
|-----|------------------------------------|--------------------------------|-------------------------------|
| CO1 | Open-source OS installation        | 70                             | 65                            |
| CO2 | Database Open-source installation  | 70                             | 65                            |
| СОЗ | Web based Open-Source installation | 70                             | 65                            |
| CO4 | Open-Source Connectivity           | 70                             | 65                            |
| CO5 | Shell Programming                  | 70                             | 65                            |

# **Mapping of COs with PSOs**

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----|------|------|------|------|------|
| CO1 | S    | S    | S    | S    | M    |
| CO2 | M    | S    | S    | S    | M    |
| CO3 | S    | M    | S    | M    | S    |
| CO4 | S    | S    | M    | S    | S    |
| CO5 | S    | M    | M    | S    | M    |

**S-STRONG** 

M-MEDIUM

L-LOW

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | S   | L   | M   | M   | L   | M   |
| CO2 | M   | S   | S   | M   | S   | S   |
| CO3 | S   | L   | M   | S   | S   | S   |
| CO4 | M   | M   | S   | S   | M   | S   |
| CO5 | S   | L   | M   | S   | L   | S   |

S-STRONG M-MEDIUM L-LOW

# Content

- 1. Linux installation
- 2. My SQL installation
- 3. Apache server installation
- 4. PHP and MY SQL Connectivity
- 5. Shell Programming

# **Web Resources**

https://ittutorials.net/open-source/

# **Course Designers**

- 1. Dr.G.Rakesh
- 2. J.Prakash

# THIAGARAJAR COLLEGE, MADURAI - 9.

(Re-Accredited with 'A++' Grade by NAAC)

# DEPARTMENT OF COMPUTER SCIENCE

(For those who joined B.Sc. Computer Science with Cognitive Systems on or after June 2020) **Programme Code: UCG** 

| Course code | Course Title                                      | Category                  | L | T | P | Credits |
|-------------|---------------------------------------------------|---------------------------|---|---|---|---------|
| UCG20CEL51  | Practical - Cryptography and network security Lab | Core<br>Elective<br>Lab 1 | - | - | 5 | 3       |

L-Lecture T-Tutorial P-Practical

| Year | Semester | Internal | External | Total |
|------|----------|----------|----------|-------|
| III  | V        | 40       | 60       | 100   |

## **Preamble**

This Course focuses towards the introduction of network security using various cryptographic algorithms.

# **Course Outcomes**

On the successful completion of the course, Students will be able to:

| #   | Course Outcome                               | Expected<br>Proficiency<br>(%) | Expected Attainment (%) |
|-----|----------------------------------------------|--------------------------------|-------------------------|
| CO1 | Implement substitution encryption technique  | 70                             | 65                      |
| CO2 | Implement transposition encryption technique | 70                             | 65                      |
| CO3 | Implement public key cryptography            | 70                             | 65                      |
| CO4 | Implement DES Algorithm                      | 70                             | 65                      |
| CO5 | Implement blowfish and RSA algorithms.       | 70                             | 65                      |

# **Mapping of COs with PSOs**

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----|------|------|------|------|------|
| CO1 | M    | M    | L    | M    | M    |
| CO2 | M    | M    | M    | S    | M    |
| CO3 | S    | S    | S    | M    | S    |
| CO4 | S    | S    | S    | M    | M    |
| CO5 | S    | S    | S    | S    | S    |

S - STRONG M - MEDIUM L – LOW

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | S   | M   | S   | M   | S   | S   |
| CO2 | S   | S   | M   | M   | M   | M   |
| CO3 | S   | M   | M   | S   | M   | S   |
| CO4 | S   | S   | S   | S   | S   | M   |
| CO5 | S   | S   | M   | S   | S   | S   |

S - STRONG

**M - MEDIUM** 

L-LOW

## **Content**

- 1. Implement Caesar cipher Encryption technique
- 2. Implement Hill cipher Algorithm.
- 3. Implement Rail fence row & Column Transformation concept
- 4. Implement Playfair Cipher concept
- 5. Implement AES algorithm logic.
- 6. Implement blowfish algorithm logic.
- 7. Implement RSA algorithm

# **Web Resources**

- 1. https://www.geeksforgeeks.org/cryptography-introduction/
- 2. https://japp.io/category/cryptography/

# **Course Designer**

Mrs.K.Vennila

# THIAGARAJAR COLLEGE, MADURAI - 9.

(Re-Accredited with 'A++' Grade by NAAC)

# DEPARTMENT OF COMPUTER SCIENCE

(For those who joined B.Sc. Computer Science with Cognitive Systems on or after June 2020)

Programme Code: UCG

| Course code | Course Title | Category        | L | Т | P | Credit |
|-------------|--------------|-----------------|---|---|---|--------|
| UCG20CE61   | Data Mining  | Core Elective 2 | 5 | - | - | 5      |

L - Lecture T - Tutorial P – Practical

| Year | Semester | Internal | External | Total |
|------|----------|----------|----------|-------|
| III  | VI       | 25       | 75       | 100   |

# **Preamble**

The course provides the knowledge of Database Management principles, the various Data Mining techniques such as Classification, Clustering and Association rule mining and introduces the concept of Neural Network.

# **Course Outcomes**

On the completion of the course the student will be able to

| #   | Course Outcome                                                                                                  | Expected<br>Proficiency<br>(%) | Expected<br>Attainment<br>(%) |
|-----|-----------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------|
| CO1 | Recall some basic Database management principles and understand the concept of Data Mining and Data warehousing | h)                             | 60                            |
| CO2 | Describe the concept of classification and Decision tree algorithms.                                            | 65                             | 60                            |
| CO3 | Illustrate Clustering algorithms and apply it to solve some problems                                            | 65                             | 60                            |
| CO4 | Describe Association rule mining technique and apply it to mine rules from some data sets                       | 65                             | 60                            |
| CO5 | Discuss the concept and working principle of Neural network, Genetic algorithm and Support Vector Machine       | 65                             | 60                            |

# **Mapping of COs with PSOs**

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----|------|------|------|------|------|
| CO1 | S    | S    | S    | M    | M    |
| CO2 | S    | M    | M    | S    | M    |
| CO3 | S    | M    | M    | M    | S    |
| CO4 | S    | M    | S    | M    | S    |
| CO5 | S    | M    | S    | M    | S    |

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | S   | S   | M   | M   | M   | S   |
| CO2 | S   | M   | M   | S   | M   | S   |
| CO3 | S   | M   | M   | M   | S   | M   |
| CO4 | S   | S   | M   | M   | S   | M   |
| CO5 | S   | M   | S   | M   | M   | M   |

S-STRONG M-MEDIUM L-LOW

# **Blooms taxonomy**

|                 | C     | End of |          |
|-----------------|-------|--------|----------|
|                 | First | Second | Semester |
| Knowledge - K1  | 40%   | 40%    | 40%      |
| Understand - K2 | 40%   | 40%    | 40%      |
| Apply - K3      | 20%   | 20%    | 20%      |

#### **Content**

Unit I 15 HOURS

**DATA WAREHOUSING:** Introduction – What is a Data Warehouse? – Definition – OLAP operations.

**DATA MINING:** Introduction - What is Data Mining? – Data Mining: Definitions – KDD vs. Data Mining – DBMS vs. DM – DM Techniques - Issues and Challenges in DM – DM Applications.

Unit II 15 HOURS

**CLASSIFICATION TECHNIQUES:** Decision Trees - Introduction - What is a Decision Tree? - Tree Construction Principle - Best Split - Splitting Indices - Splitting Criteria - Decision Tree Construction Algorithms - ID3-C4.5.

Unit III 15 HOURS

**CLUSTERING TECHNIQUES:** Introduction - Clustering Paradigms - Partitioning Algorithms - k - Medoid Algorithms - Hierarchical Clustering - DBSCAN.

Unit IV 15 HOURS

**ASSOCIATION RULES:** Introduction – What is an Association Rule? – Methods to Discover Association Rules – Apriori Algorithm - FP tree Growth Algorithm.

Unit V 15 HOURS

**OTHER TECHNIQUES:** Introduction-Neural Networks-Learning in NN-Unsupervised Learning- Genetic algorithm-Support Vector Machine.

## **Text Book**

Arun K Pujari, 2013, Data Mining Techniques, Second Edition, Universities Press

# **Chapters (Relevant Topics Only)**

Unit - I : 2 (2.1-2.3,2.5) & 3 (3.1-3.5,3.7,3.9,3.11)

Unit - II : 6 (6.1-6.7,6.9,6.10) Unit - III : 5 (5.1 - 5.4,5.7,5.8) Unit - IV : 4 (4.1 - 4.4, 4.8) Unit - V : 7 (7.1 - 7.4, 7.6,7.8)

#### **References**

- 4. K.P.Soman, Shyam Diwakar, V.Ajay, 2006, Insight into Data Mining Theory and Practice, Prentice Hall of India Private Limited, New Delhi
- 5. Jiawei Han , Micheline Kamber , Jian Pei , 2011, Data Mining Concepts and Techniques , Third Edition, Morgan Kaufmann Publishers, An Imprint of Elsevier , New Delhi.
- Ian H.Witten & Eibe Frank, 2008, Data Mining Practical Machine Learning Tools and Techniques, Second Edition, Morgan Kaufmann Publishers, Imprint of Elsevier, New Delhi.

## **Course Designer**

Dr.B.Subashini



# THIAGARAJAR COLLEGE, MADURAI - 9.

(Re-Accredited with 'A++' Grade by NAAC)

# DEPARTMENT OF COMPUTER SCIENCE

(For those who joined B.Sc. Computer Science with Cognitive Systems on or after June 2020)

Programme Code: UCG

| Course code | Course Title       | Category        | L | Т | P | Credit |
|-------------|--------------------|-----------------|---|---|---|--------|
| UCG20CE61   | Big Data Analytics | Core Elective 2 | 5 | - | - | 5      |

P – Practical

L – Lecture T – Tutorial

| Year | Semester | Internal | External | Total |
|------|----------|----------|----------|-------|
| III  | VI       | 25       | 75       | 100   |

## **Preamble**

This course provides an in-depth knowledge in Big Data Analytics for mining useful information from large volumes of datasets. The student will learn about fundamentals of BigData, Big Data technologies like Hadoop, MapReduce, NoSQL, MongoDB, Hbase and Cassandra.

# **Course Outcomes**

On the successful completion of this course, Students will be able to:

| #   | Course Outcome                                                                                                | Expected<br>Proficiency<br>(%) | Expected<br>Outcome<br>(%) |
|-----|---------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------|
| CO1 | Discuss about the overview of Big Data analytics, types of Big Data, technologies and benefits of Big Data.   | 65                             | 60                         |
| CO2 | Understand the concept of Hadoop Framework and its Architecture.                                              | 65                             | 60                         |
| CO3 | Outline the working principle of MapReduce and operations of MapReduce.                                       | 65                             | 60                         |
| CO4 | Examine the various database concepts such as NoSQL, MongoDB, Cassandra and Hbase used in Big Data Analytics. | 65                             | 60                         |
| CO5 | Explore knowledge on JAQL, components of JAQL and JSON concept in Big Data Analytics.                         | 65                             | 60                         |

# **Mapping of COs with PSOs**

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----|------|------|------|------|------|
| CO1 | S    | L    | M    | L    | M    |

| CO2 | S | M | S | M | M |
|-----|---|---|---|---|---|
| CO3 | S | M | S | S | S |
| CO4 | S | M | S | M | M |
| CO5 | S | M | S | S | S |

S-STRONG M-MEDIUM L-LOW

# **Mapping of COs with POs**

|     | PO1 | PO2     | PO3 | PO4 | PO5 | PO6 |
|-----|-----|---------|-----|-----|-----|-----|
| CO1 | M   | ${f L}$ | L   | L   | L   | M   |
| CO2 | M   | M       | M   | M   | M   | S   |
| CO3 | M   | ${f L}$ | M   | S   | S   | S   |
| CO4 | M   | M       | M   | S   | M   | S   |
| CO5 | M   | M       | M   | S   | S   | S   |

S-STRONG M-MEDIUM L-LOW

# **Blooms taxonomy**

|               | CA    |        | End of Semester |
|---------------|-------|--------|-----------------|
|               | First | Second |                 |
| Knowledge-K1  | 40%   | 40%    | 40%             |
| Understand-K2 | 40%   | 40%    | 40%             |
| Apply-K3      | 20%   | 20%    | 20%             |

# **Content**

Unit – I 15 HOURS

Overview of Big Data: Defining Big Data - Big Data Types - Big Data Analytics - Industry Examples of Big Data - Big Data and Data Risk - Big Data Technologies - Benefits of Big Data.

Unit – II 15 HOURS

**Basics of Hadoop**: Big Data and Hadoop - Hadoop Architecture - Main Components of Hadoop Framework - Analysing Big Data with Hadoop - Benefits of Distributed Applications - Hadoop Distributed File System - Advantages of Hadoop - Ten Big Hadoop Platforms.

Unit - III 15 HOURS

**MapReduce**: Introduction to MapReduce - Working of MapReduce - Map operations - MapReduce User Interfaces.

Unit - IV 15 HOURS

**NoSQL Databases**: NoSQL Data Management - Types of NoSQL Databases - Query Model for Big Data - Benefits of NoSQL - MongoDB - Advantages of MongoDB over RDBMS - Replication in MongoDB.

Unit - V 15 HOURS

**HBase, CASSANDRA and JAQL**: Introduction to HBase - Row-oriented and Column-oriented Data Stores - HDFS vs HBase-Hbase Architecture -HBase Data Model - Introduction to Cassandra - Features of Cassandra . Introduction to JAQL- JSON- Components of JAQL.

#### **Text Book**

V.K. Jain, Big Data and Hadoop, Khanna Book Publishing, 2017

# **Chapters (Relevant Topics only)**

Unit - I : 1 (1.1 -1.7,1.10,1.11) Unit - II : 2 (2.1-2.6,2.16,2.20) Unit - : III : 7 (7.1-7.3,7.5) Unit - IV : 5 (5.1-5.6,5.10)

Unit - V : 6 and 8 (6.1-6.5,6.8-6.9,8.1-8.3)

## **Web Resources**

1. https://www.youtube.com/watch?v=dK4aGzeBPkk

(Big Data Introduction)

2. <a href="https://www.youtube.com/c/edurekaIN/search?query=big%20data">https://www.youtube.com/c/edurekaIN/search?query=big%20data</a>

(Overview of BigData Analytics)

3. <a href="https://www.youtube.com/c/edurekaIN/search?query=hadoop">https://www.youtube.com/c/edurekaIN/search?query=hadoop</a>

(Hadoop Overview)

4. https://www.youtube.com/c/edurekaIN/search?query=mapreduce

(Overview on MapReduce)

5. <a href="https://www.youtube.com/c/edurekaIN/search?query=mongodb%20nosql">https://www.youtube.com/c/edurekaIN/search?query=mongodb%20nosql</a>

(MongoDB,NoSQL)

- 6. <a href="https://www.youtube.com/c/edurekaIN/search?query=hbase%20">https://www.youtube.com/c/edurekaIN/search?query=hbase%20</a> (Hbase)
- 7. https://www.youtube.com/c/edurekaIN/search?query=cassandra (Cassandra)
- 8. <a href="https://www.youtube.com/watch?v=PNwtPMQAMiw">https://www.youtube.com/watch?v=PNwtPMQAMiw</a> (JAQL)

## **Course Designer**

Dr.B.Subashini.



# B.Sc., Data Science (SF) PROGRAMME CODE - UDS



# **Program Educational Objective (PEO):**

Graduates will be able to

| PEO 1 | Be employed as a Data Scientist or they can pursue the professional degree in M.Sc Data     |
|-------|---------------------------------------------------------------------------------------------|
|       | science                                                                                     |
| PEO 2 | Apply the knowledge of data science coupled with modern programming by inculcating          |
|       | mathematical skills in the relevant domain                                                  |
| PEO 3 | Develop the skills as required for data analytics for ethical and professional expertise in |
|       | IT industry standards                                                                       |
| PEO 4 | Retain programming and analytical practices in the prevailing modern technological          |
|       | society which pertains to use high level and distributed computing                          |
| PEO 5 | Lead a dynamic and vibrant career as a Data scientist and Data analyst in several social    |
|       | community sites or either in marketing field of IT and other multidisciplinary fields       |

# **Program Specific Outcome (PSO):**

On successful completion of B.Sc Data Science course, the students will

| PSO 1 | Develop the knowledge of Data Science and its relevant programming skills in various |
|-------|--------------------------------------------------------------------------------------|
|       | domains                                                                              |
| PSO 2 | Build up analytical skills combined with mathematical knowledge to implement various |
|       | numerical methods using algorithms for applying standard practices in data science   |
| PSO 3 | Apply knowledge of problem solving and programming using modern high level           |
|       | programming concepts to inculcate statistical approach                               |
| PSO 4 | Maintain remarkable programming and communication skills among the young dynamic     |
|       | students to satisfy the corporate requirements                                       |
| PSO 5 | Generate cognizance on the current industrial and social practices for solving the   |
|       | statistical and marketing problems in accordance to the current scenario             |



# THIAGARAJAR COLLEGE (AUTONOMOUS) :: MADURAI – 09

(Re-Accredited with "A++" Grade by NAAC)

# DEPARTMENT OF COMPUTER SCIENCE

B.Sc., Data Science (For those who joined in 2022 and after)

|            |                | I SEMESTER                             |      |      |              |         |    |     |
|------------|----------------|----------------------------------------|------|------|--------------|---------|----|-----|
| C          |                | TD:41                                  | Hrs/ | Crd. | Total<br>Hrs | Marks   |    |     |
| Course     | Code No.       | Title of the paper                     | wk   |      |              | CI<br>A | SE | TOT |
| Part 1     | U20P111CS      | இக்காலத் தமிழும்<br>இடைக்காலத் தமிழும; | 5    | 3    | 75           | 25      | 75 | 100 |
| Part 2     | UCG20EN11      | English I – Communication<br>Skills    | 3    | 3    | 45           | 25      | 75 | 100 |
| Core 1     | UDS22C11       | Problem solving using C Programming    | 4    | 3    | 60           | 25      | 75 | 100 |
| Core 2     | UDS22C12       | Fundamentals of Data Science           | 3    | 3    | 45           | 25      | 75 | 100 |
| Core 3     | D              | Discrete Mathematical<br>Structures    | 5    | 4    | 75           | 25      | 75 | 100 |
| Allied 1   | UMA22GE11<br>D | Calculus                               | 5    | 5    | 75           | 25      | 75 | 100 |
| Core Lab 1 | UDS22CL11      | C Programming Lab                      | 3    | 2    | 45           | 40      | 60 | 100 |
| AECC       | U20ES11        | Environmental Science                  | 2    | 2    | 30           | 15      | 35 | 50  |
| Total      |                |                                        | 30   | 25   |              |         |    | 750 |

|            | II SEMESTER |                                       |      |      |       |     |    |     |  |  |  |
|------------|-------------|---------------------------------------|------|------|-------|-----|----|-----|--|--|--|
|            |             |                                       | Hrs/ |      | Total |     | KS |     |  |  |  |
| Course     | Code No.    | Title of the paper                    | wk   | Crd. | Hrs   | CIA | SE | TOT |  |  |  |
| Part 1     | U20P121CS   | சமயத் தமிழும் செவ்வியல்<br>தமிழும்    | 5    | 3    | 75    | 25  | 75 | 100 |  |  |  |
| Part 2     | UCG20EN21   | English II – Campus to<br>Corporate   | 3    | 3    | 45    | 25  | 75 | 100 |  |  |  |
| Core 4     | UDS22C21    | Data Structures and Algorithms        | 4    | 4    | 60    | 25  | 75 | 100 |  |  |  |
| Core 5     | UDS22C22    | Python Programming                    | 4    | 4    | 60    | 25  | 75 | 100 |  |  |  |
| Allied 2   | UMA22GE21D  | Probability and Statistics            | 5    | 5    | 75    | 25  | 75 | 100 |  |  |  |
| Core Lab 2 | UDS22CL21   | Data Structures and Algorithms<br>Lab | 4    | 2    | 60    | 40  | 60 | 100 |  |  |  |
| Core Lab 3 | UDS22CL22   | Python Programming Lab                | 3    | 2    | 45    | 40  | 60 | 100 |  |  |  |
| AECC       | U20VE21     | Value Education                       | 2    | 1    | 30    | 15  | 35 | 50  |  |  |  |
| Total      |             |                                       | 30   | 24   |       |     |    | 750 |  |  |  |

|            | III SEMESTER  |                                          |      |     |          |     |      |      |  |  |
|------------|---------------|------------------------------------------|------|-----|----------|-----|------|------|--|--|
| -          |               | T71.4                                    | Hrs/ | Crd | Tota     |     | Mark | KS . |  |  |
| Course     | Code No.      | Title of the paper                       | wk   | •   | l<br>Hrs | CIA | SE   | TOT  |  |  |
| Core 6     | UDS22C31      | Programming in Java                      | 5    | 4   | 75       | 25  | 75   | 100  |  |  |
| Core 7     | 1 1111877637  | Relational Database<br>Management System | 5    | 4   | 75       | 25  | 75   | 100  |  |  |
| Core 8     |               | Linear Algebra                           | 5    | 4   | 75       | 25  | 75   | 100  |  |  |
| Allied 3   | UMA22GE3<br>1 | Numerical methods                        | 5    | 5   | 75       | 25  | 75   | 100  |  |  |
| Core Lab 4 | UDS22CL31     | Lab in Java Programming                  | 4    | 2   | 60       | 40  | 60   | 100  |  |  |
| Core Lab 5 | UDS22CL32     | RDBMS Lab                                | 4    | 2   | 60       | 40  | 60   | 100  |  |  |
| NME I      | UDS22NE31     | NME - I                                  | 2    | 2   | 30       | 15  | 35   | 50   |  |  |
| Total      |               |                                          | 30   | 23  |          |     |      | 650  |  |  |

|            | IV SEMESTER       |                                         |      |     |       |       |    |     |  |  |  |
|------------|-------------------|-----------------------------------------|------|-----|-------|-------|----|-----|--|--|--|
|            | ~                 | TD*41 C 41                              | Hrs/ | Crd | Total | Marks |    |     |  |  |  |
| Course     | Code No.          | Title of the paper                      | wk   | •   | Hrs   | CIA   | SE | TOT |  |  |  |
| Core 9     | 1 11 18 / /1 /1 1 | Data Warehousing and Data<br>Mining     | 5    | 4   | 75    | 25    | 75 | 100 |  |  |  |
| Core 10    | UDS22C42          | R Programming                           | 5    | 4   | 75    | 25    | 75 | 100 |  |  |  |
| Allied 4   | UMA22GE41         | Transform & their Applications          | 5    | 5   | 75    | 25    | 75 | 100 |  |  |  |
| Core 11    | UDS22C43          | Predictive Analytics                    | 5    | 4   | 75    | 25    | 75 | 100 |  |  |  |
| Core Lab 6 | 1 11135//141      | Data Warehousing and Data<br>Mining Lab | 4    | 2   | 60    | 40    | 60 | 100 |  |  |  |
| Core Lab 7 | UDS22CL42         | Lab in R Programming                    | 4    | 2   | 60    | 40    | 60 | 100 |  |  |  |
| NME II     | UDS22NE41         | NME - II                                | 2    | 2   | 30    | 15    | 35 | 50  |  |  |  |
| Total      |                   |                                         | 30   | 23  |       |       |    | 650 |  |  |  |

|            | V SEMESTER |                      |            |      |              |       |    |     |  |  |
|------------|------------|----------------------|------------|------|--------------|-------|----|-----|--|--|
| Course     | Code No.   | Title of the paper   | Hrs/<br>wk | Crd. | Total<br>Hrs | Marks |    | S   |  |  |
|            |            |                      |            |      |              | CIA   | SE | TOT |  |  |
| Core 12    | UDS22C51   | Machine Learning     | 6          | 5    | 90           | 25    | 75 | 100 |  |  |
| Core 13    | UDS22C52   | Data Analytics       | 6          | 5    | 90           | 25    | 75 | 100 |  |  |
| Core 14    | UDS22C53   | Software Engineering | 5          | 4    | 75           | 25    | 75 | 100 |  |  |
| Core Lab 8 | UDS22CL51  | Machine Learning Lab | 6          | 2    | 90           | 40    | 60 | 100 |  |  |
| Elective I | UDS22CE51  | Elective- I          | 5          | 5    | 75           | 25    | 75 | 100 |  |  |
| SEC I      | UDS22SE51  | SEC – I              | 2          | 2    | 30           | 15    | 35 | 50  |  |  |
| Total      |            |                      | 30         | 23   |              |       |    | 550 |  |  |
|            | UDS20IN    | Internship           |            | 2    |              | 15    | 35 | 50  |  |  |

|             | VI SEMESTER |                        |            |      |              |     |      |           |
|-------------|-------------|------------------------|------------|------|--------------|-----|------|-----------|
| Course      | Code No.    | Title of the paper     | Hrs/<br>wk | Crd. | Total<br>Hrs |     | Mark | <b>KS</b> |
|             |             |                        |            |      |              | CIA | SE   | TOT       |
| Core 15     | UDS22C61    | Deep Learning          | 5          | 4    | 75           | 25  | 75   | 100       |
| Core 16     | UDS22C62    | Reinforcement Learning | 5          | 4    | 75           | 25  | 75   | 100       |
| Core Lab 9  | UDS22CL61   | Deep Learning Lab      | 5          | 2    | 75           | 40  | 60   | 100       |
| Elective II | UDS22CE61   | Elective – II          | 5          | 5    | 75           | 25  | 75   | 100       |
| Project     | UDS22PJ61   | Project                | 8          | 4    | 120          | 25  | 75   | 100       |
| SEC II      | UDS22SE61   | SEC – II               | 2          | 2    | 30           | 15  | 35   | 50        |
| Part V      |             | NCC/NSS/PE             |            | 1    |              |     |      |           |
| Total       |             |                        | 30         | 22   |              |     |      | 550       |

# **List of SEC:**

- 1. SPSS Statistical Package
- 2. Open Source Technology
- 3. Data Analysis using Spreadsheet
- 4. PHP Programming

# **List of Electives:**

- 1. Big Data Systems
- 2. Information Security
- 3. Business Analytics
- 4. Data Visualization

Consolidation of contact hours and Credits: UG

| Semester | Contact Hrs/Week | Credits |
|----------|------------------|---------|
| I        | 30 Hrs           | 25      |
| II       | 30 Hrs           | 24      |
| III      | 30 Hrs           | 23      |
| IV       | 30 Hrs           | 23      |
| V        | 30 Hrs           | 23      |
| VI       | 30 Hrs           | 22      |
| Total    | 180 Hrs          | 140     |

# THIAGARAJAR COLLEGE, MADURAI - 09

(Re-Accredited with "A++" Grade by NAAC)

# DEPARTMENT OF COMPUTER SCIENCE

(For those who joined B.Sc., Data Science in 2022 and after)

| Course code | Course Title                        | Category | L | Т | P | Credit |
|-------------|-------------------------------------|----------|---|---|---|--------|
| UDS22C11    | Problem Solving using C Programming | Core 1   | 3 | 1 | - | 3      |

L – Lecture T – Tutorial P – Practical

| Year | Semester | Internal | External | Total |
|------|----------|----------|----------|-------|
| I    | I        | 25       | 75       | 100   |

# **Preamble**

This Course is designed to enable the students to know the programming concepts of C language and to endow the learners with the skills required to develop both system and application development.

#### **Course Outcomes**

On the successful completion of this course, Students will be able to:

| #   | Course Outcome                                                        | Expected<br>Proficiency<br>(%) | Expected Outcome (%) |
|-----|-----------------------------------------------------------------------|--------------------------------|----------------------|
| CO1 | Illustrate the programming approaches and Introduce C language        | 65                             | 60                   |
| CO2 | Demonstrate the concepts of operators and expressions                 | 65                             | 60                   |
| CO3 | Exemplify the concept of conditional branching and looping statements | 65                             | 60                   |
| CO4 | Overview the concept of arrays and string                             | 65                             | 60                   |
| CO5 | Implement the concepts of functions, pointers and file handling.      | 65                             | 60                   |

# **Mapping of COs with PSOs**

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----|------|------|------|------|------|
| CO1 | L    | S    | M    | M    | M    |
| CO2 | M    | S    | S    | M    | M    |
| CO3 | L    | M    | S    | M    | M    |
| CO4 | L    | M    | S    | M    | L    |

| CO5      | S | M      | M  | M     | M |
|----------|---|--------|----|-------|---|
| S-STRONG |   | M-MEDI | UM | L-LOV | W |

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | M   | L   | L   | L   | L   | M   |
| CO2 | M   | M   | M   | M   | M   | S   |
| CO3 | M   | L   | M   | S   | S   | S   |
| CO4 | M   | M   | M   | S   | M   | S   |
| CO5 | M   | M   | M   | S   | S   | S   |

S-STRONG M-MEDIUM L-LOW

#### **Blooms taxonomy**

|                | CA    |        | End of   |
|----------------|-------|--------|----------|
|                | First | Second | Semester |
| Knowledge(K1)  | 40%   | 40%    | 40%      |
| Understand(K2) | 40%   | 40%    | 40%      |
| Apply(K3)      | 20%   | 20%    | 20%      |

#### **Content**

# **Unit -I: Introduction to Programming**

12 Hours

Introduction to C- Some Simple C Program – C Character Set - Identifiers and keywords, Data types, Constants, Variables, Declarations, Expressions, Statements- Symbolic Constants

#### **Unit - II: Operators and Expressions**

10 Hours

Arithmetic operators, Unary operators, Relational and logical operators, Assignment operators, Conditional operator – Library Functions.

#### **Unit - III: Conditional Branching, Loops and Functions**

12 Hours

Branching, if-else statement, switch statement, goto statement, Looping, while statement, do- while statement, for statement, Nested control structures, break statement, continue statement.

Functions – Defining a Function – Accessing a Function – Function Prototypes – Passing arguments to a Function - Recursion

#### **Unit IV: Arrays and Pointers**

12 Hours

Defining an array, processing an array, Multidimensional arrays - Arrays and Strings- Pointer Declarations - Passing pointers to functions - Pointers and one dimensional arrays - Dynamic memory allocation - Operations on pointers - Pointers and Multidimensional arrays - Arrays of pointers

#### **Unit - V: Structures and Data Files**

14 Hours

Defining a Structure – Processing a structure – User Defined Data types – Structures and Pointers – Passing structures to functions – Self Referential Structures – Unions – Opening and Closing a Data file – Creating a Data file – Processing a Data file – Unformatted data files

## **Text Books**

1. Byron Gottfried, "Schaum's Outline of Programming with C", McGraw Hill Education (India), 4th edition, 2018, ISBN: 978-9353160272

## **Chapter (Relevant Topics Only)**

Unit – I : 1.5, 1.6, and 2.1 to 2.9

Unit – II : 3.1 to 3.6

Unit – III : 6.2 to 6.11 and 7.1 to 7.6 Unit – IV : 9.1 to 9.5 and 10.1 to 10.8 UNIT – V : 11.1 to 11.7 and 12.1 to 12.4

## **Web Resources**

- 1. https://www.youtube.com/watch?v=EjavYOFoJJ0
- 2. <a href="https://www.youtube.com/watch?v=3-7hEhXd1So">https://www.youtube.com/watch?v=3-7hEhXd1So</a>
- 3. https://www.youtube.com/watch?v=MN94x\_rQlvI
- 4. https://www.youtube.com/watch?v=08LWytp6PNI
- 5. https://www.youtube.com/watch?v=IuDJeGqEZ3A

## **Course Designer**

Mr.J.Prakash



## THIAGARAJAR COLLEGE, MADURAI - 09

(Re-Accredited with "A++" Grade by NAAC)

#### DEPARTMENT OF COMPUTER SCIENCE

(For those who joined B.Sc., Data Science in 2022 and after)

| Course code | Course Title                    | Category | L | T | P | Credit |
|-------------|---------------------------------|----------|---|---|---|--------|
| UDS22C12    | Fundamentals of Data<br>Science | Core 2   | 3 | - | - | 3      |

L-Lecture T-Tutorial P-Practical

| Year | Semester | Internal | External | Total |
|------|----------|----------|----------|-------|
| I    | I        | 25       | 75       | 100   |

## **Preamble**

This Course used to understand the overview of Data Science, data analysis, building models, text mining and data visualization techniques.

## **Course Outcomes**

On the completion of the course the student will be able to:

| #               | Course Outcome                             | Expected<br>Proficiency<br>(%) | Expected<br>Outcome<br>(%) |
|-----------------|--------------------------------------------|--------------------------------|----------------------------|
| CO1             | Understand the basic of data.              | 65                             | 60                         |
| CO2             | Summarize the process of data science.     | 65                             | 60                         |
| CO <sub>3</sub> | Perform the analysis of given data.        | 65                             | 60                         |
| CO4             | Describe about machine learning            | 65                             | 60                         |
| CO5             | Explore Text mining and data visualization | 65                             | 60                         |

**Mapping of COs with PSOs** 

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----|------|------|------|------|------|
| CO1 | S    | S    | M    | M    | L    |
| CO2 | S    | L    | L    | M    | M    |
| CO3 | M    | M    | S    | M    | M    |
| CO4 | M    | M    | S    | M    | M    |
| CO5 | M    | M    | S    | M    | M    |

S-STRONG M-MEDIUM L-LOW

**Mapping of COs with POs** 

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | S   | S   | M   | M   | -   | L   |

| CO2 | S | L | L | L | - | M            |
|-----|---|---|---|---|---|--------------|
| CO3 | M | M | M | M | - | M            |
| CO4 | M | S | M | S | - | M            |
| CO5 | M | M | M | S | - | $\mathbf{M}$ |

S-STRONG M-MEDIUM L-LOW

# **Blooms taxonomy**

|                 | C     | End of |          |
|-----------------|-------|--------|----------|
|                 | First | Second | Semester |
| Knowledge - K1  | 40%   | 40%    | 40%      |
| Understand - K2 | 40%   | 40%    | 40%      |
| Apply - K3      | 20%   | 20%    | 20%      |

#### Content

UNIT I 9 HOURS

Data science introduction – Facets of data – data science process- Big Data ecosystem and data science.

UNIT II 9 HOURS

Overview of data science process- Defining research goals and creating a project charter-retrieving data.

UNIT III 9 HOURS

Cleansing, integrating and transforming data -Exploratory data analysis

UNIT IV 9 HOURS

Build the models – presenting findings and building application on top of them

UNIT V 9 HOURS

Text mining in real world- Text mining techniques – Data visualization

# **Text Books**

1. Davy Cielen, Arno D. B. Meysman, Mohamed Ali, "Introducing Data Science", Manning Publications Co, 2016.

## **Chapters (Relevant Topics Only)**

Unit I : Chapter 1
Unit II : Chapter 2
Unit III : Chapter 2
Unit IV : Chapter 2
Unit V : Chapter 8 & 9

#### Web Resource(s)

https://www.w3schools.com/datascience/

## **Course Designer**

Dr. G.Rakesh

## THIAGARAJAR COLLEGE, MADURAI - 09

(Re-Accredited with "A++" Grade by NAAC)

#### DEPARTMENT OF COMPUTER SCIENCE

(For those who joined B.Sc., Data Science in 2022 and after)

| Course<br>Code | Course Title                     | Category | L | Т | P | Credit |
|----------------|----------------------------------|----------|---|---|---|--------|
| UMA22C1        | Discrete Mathematical Structures | Core 3   | 4 | 1 | - | 4      |
| 1DS            |                                  |          |   |   |   |        |

| L - Lecture T - Tutorial P – Pr | Practical |
|---------------------------------|-----------|
|---------------------------------|-----------|

| Year | Semester | ter Internal |    | Total |  |
|------|----------|--------------|----|-------|--|
| I    | I        | 25           | 75 | 100   |  |

## **Preamble**

The course provides an elementary introduction to Discrete mathematical structures for Data Science. It provides students with a hands-on experience of the relevancy of Mathematics in real life. Also it provides the knowledge of Propositional and predicate logic principles, Functions, Relations, Basics of Graph theory with graph models and Boolean Algebra.

#### **Course Outcomes**

On the completion of the course the student will be able to

| #   | Course Outcome                                                                                            | Expected Proficiency (%) | Expected Attainment (%) |
|-----|-----------------------------------------------------------------------------------------------------------|--------------------------|-------------------------|
| CO1 | Solve problems based on logic principles                                                                  | 75                       | 70                      |
| CO2 | Recall definitions of functions and also solve problems based on functions, sequences and summations      | 70                       | 65                      |
| CO3 | Summarize properties of relations and equivalence relations. Apply the concept of relations in data bases | 80                       | 75                      |
| CO4 | Solve real life network problems using Graph Theory principles                                            | 85                       | 75                      |
| CO5 | Summarize Boolean identities and solve some problems in logic gates                                       | 70                       | 65                      |

# **Mapping of COs with PSOs**

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----|------|------|------|------|------|
| CO1 | M    | S    | S    | M    | M    |
| CO2 | M    | S    | M    | S    | M    |
| CO3 | S    | M    | S    | M    | S    |
| CO4 | S    | M    | S    | M    | M    |
| CO5 | M    | S    | S    | M    | M    |

S-STRONG M-MEDIUM L-LOW

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | S   | S   | S   | M   | M   | M   |
| CO2 | M   | S   | M   | M   | M   | M   |
| CO3 | M   | S   | S   | S   | M   | S   |
| CO4 | M   | S   | M   | M   | S   | M   |
| CO5 | S   | S   | S   | M   | M   | M   |

S-STRONG M-M

**M-MEDIUM** 

L-LOW

#### Blooms taxonomy

|                | CA<br>First Second |     | End of   |
|----------------|--------------------|-----|----------|
|                |                    |     | Semester |
| Knowledge(K1)  | 40%                | 40% | 40%      |
| Understand(K2) | 40%                | 40% | 40%      |
| Apply(K3)      | 20%                | 20% | 20%      |

## **Contents**

Unit I 15 Hours

**The Foundations: Logic:** Propositional Logic – Applications of Propositional Logic – Propositional Equivalences – Predicates and Quantifiers – Nested Quantifiers.

Unit II 15 Hours

**Basic Structures: Functions, Sequences and Sums:** Functions - Sequences and Summations - Cardinality of Sets.

Unit III 15 Hours

**Relations:** Relations and Their Properties – n-ary Relations and Their Applications – Representing Relations – Closures of Relations – Equivalence Relations – Partial orderings.

Unit IV 15 Hours

**Graphs:** Graphs and Graph Models – Graph Terminology and Special Types of Graphs – Representing Graphs and Graph Isomorphism.

Unit V 15 Hour.

**Boolean Algebra:** Boolean Functions – Representing Boolean Functions – Logic Gates.

## **Text Book:**

Kenneth H. Rosen, 2019, Discrete Mathematics and its Applications, Eighth Edition, McGraw-Hill Education, New Delhi.

# **Chapters (Relevant Topics Only)**

Unit I : 1 (1.1 - 1.5) Unit II : 2 (2.3 - 2.5) Unit III : 9( 9.1 - 9.6) Unit IV : 10 (10.1 - 10.3) Unit V : 12(12.1 - 12.3)

# **References:**

- 1. J.P. Trembley, R. Manohar 2008, Discrete Mathematical Structures with Applications to Computer Science Tata McGraw Hill Publishing Company Limited, New Delhi.
- 2. Dr. M.K. Venkatraman, Dr. N. Sridharan, Dr. N. Chandrasekaran, 2009, Discrete Mathematics, The National Publishing Company 2009.
- 3. T. Veerarajan, 2007, Discrete Mathematics with Graph Theory and Combinatorics, Tata McGraw Hill Publishing Company Limited, New Delhi.

# **Course Designers:**

- 1. Dr. B. Arivazhagan
- 2. Ms. P. Vanmathy



## THIAGARAJAR COLLEGE, MADURAI - 09

(Re-Accredited with "A++" Grade by NAAC)

## DEPARTMENT OF COMPUTER SCIENCE

(For those who joined B.Sc., Data Science in 2022 and after)

| Course<br>Code | Course Title | Category | L | T | P | Credit |
|----------------|--------------|----------|---|---|---|--------|
| UMA22GE        | Calculus     | Allied 1 | 5 | - | - | 5      |
| 11D            |              |          |   |   |   |        |

L - Lecture T - Tutorial P – Practical

| Year | Semester | Internal | External | Total |
|------|----------|----------|----------|-------|
| I    | I        | 25       | 75       | 100   |

## **Preamble**

The objective of this course is to achieve conceptual understanding and to retain the best traditions of calculus. The syllabus is designed to provide the basic tools of calculus which mainly deals with topics such as single variable and multivariable calculus and plays an important role in the understanding of science, engineering and computer science, among other disciplines.

# **Course Outcomes**

On successful completion of the course, the student will be able to:

| #   | Course Outcome                                                                                         | Expected<br>Proficiency<br>(%) | Expected<br>Attainment<br>(%) |
|-----|--------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------|
| CO1 | Recall the basic concepts in successive differentiation.                                               | 80                             | 70                            |
| CO2 | Determine the maxima and minima of the given functions.                                                | 75                             | 70                            |
| CO3 | Develop problem solving skills using partial derivatives                                               | 80                             | 70                            |
| CO4 | Solve problems in double and triple integrals using transformation of one coordinate system to another | 75                             | 70                            |
| CO5 | Analyze the properties of Beta and Gamma functions.                                                    | 70                             | 65                            |

# **Mapping of COs with PSOs**

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----|------|------|------|------|------|
| CO1 | S    | S    | M    | M    | M    |
| CO2 | S    | S    | L    | M    | M    |
| CO3 | L    | M    | M    | S    | S    |
| CO4 | M    | L    | M    | M    | S    |
| CO5 | S    | M    | S    | M    | M    |

S-STRONG

**M-MEDIUM** 

L-LOW

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | L   | M   | M   | L   | M   | M   |
| CO2 | S   | M   | M   | M   | M   | M   |
| CO3 | S   | M   | M   | M   | M   | S   |
| CO4 | M   | S   | M   | S   | S   | S   |
| CO5 | M   | M   | M   | S   | M   | S   |

## **Blooms taxonomy**

|                | CA           | CA            |         |  |
|----------------|--------------|---------------|---------|--|
|                | First(Marks) | Second(Marks) | (Marks) |  |
| Knowledge(K1)  | 40%          | 40%           | 40%     |  |
| Understand(K2) | 40%          | 40%           | 40%     |  |
| Apply(K3)      | 20%          | 20%           | 20%     |  |

## **Content**

Unit I (15 Hours)

Successive differentiation – Leibnitz's theorem for the nth derivative of the product of two functions – Fundamental theorems – Expansions of functions – Indeterminate forms.

Unit II (15 Hours)

Increasing and decreasing functions – Maxima and minima - Functions of two or more variables – Partial derivatives – Homogeneous functions.

Unit III (15 Hours)

Total derivative – Change of variables – Jacobians - Maxima and minima of functions of two variables – Lagrange's method of undetermined multipliers.

Unit IV (15 Hours)

Reduction Formula – Definite Integrals –Integrals as the limit of a sum - Double integrals - Change of order of integration – Double integrals in polar coordinates.

Unit V (15 Hours)

Triple integrals – Change of variables – Beta function - Gamma function – Relation between Beta and Gamma functions.

#### **Text Book**

B.S. Grewal, 2017, Higher Engineering Mathematics, 44<sup>th</sup> Edition, Khanna Publishers Pvt. Ltd., New Delhi, India.

# **Chapters (Relevant Topics Only)**

Unit I : IV (4.1 - 4.5)

Unit II : IV (4.14 & 4.15) V (5.1, 5.2, 5.4)

Unit III : V(5.5 - 5.7, 5.11, 5.12) Unit IV : VI(6.1 - 6.9) VII(7.1 - 7.3) Unit V : VII(7.5, 7.7, 7.14 - 7.16)

### References

- 1. S.Arumugam and A. Thangapandi Isaac, 2014, Calculus, New Gamma Publishiung House, Palayamkottai, India
- 2. P.R. Vittal and V. Malini, 2014, Calculus, Third Edition, Margham Publications, Chennai, India.
- 3. Tom M. Apostal, 2007, Calculus, Volume II Wiley Student Publications, New Jersey, United States.
- 4. Shanti Narayan, Integral Calculus, 2002, 9th Edition, S. Chand and Company Ltd., New Delhi, India
- 5. Shanti Narayan, Differential Calculus, 2002, 14th Edition, S. Chand and Company Ltd, New Delhi, India.

### **Course Designers**

- 1.Dr.K. Kayathri
- 2.Mrs. P. Kalai Mathy
- 3.Mrs. B. Ambika



(Re-Accredited with "A++" Grade by NAAC)

### DEPARTMENT OF COMPUTER SCIENCE

(For those who joined B.Sc., Data Science in 2022 and after)

| Course code | Course Title      | Category   | L | T | P | Credit |
|-------------|-------------------|------------|---|---|---|--------|
| UDS22CL11   | C Programming Lab | Core Lab 1 | - | - | 3 | 2      |

L – Lecture T – Tutorial

| Year | Semester | Internal | External | Total |
|------|----------|----------|----------|-------|
| I    | I        | 40       | 60       | 100   |

P – Practical

### **Preamble**

This course helps the students in understanding a powerful, portable and flexible structured programming language which is suitable for both systems and applications programming.

### **Course Outcomes**

On the completion of the course the student will be able to

| #   | Course Outcome                               | Expected<br>Proficiency<br>(%) | Expected Attainment (%) |
|-----|----------------------------------------------|--------------------------------|-------------------------|
| CO1 | Implement Conditional and looping statements | 70                             | 65                      |
| CO2 | Develop sting operations                     | 70                             | 65                      |
| CO3 | Understand and implement pointers            | 70                             | 65                      |
| CO4 | Develop the concept of Euler path            | 70                             | 65                      |
| CO5 | Implement file concepts                      | 70                             | 65                      |

# **Mapping of COs with PSOs**

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----|------|------|------|------|------|
| CO1 | L    | S    | M    | M    | M    |
| CO2 | M    | S    | S    | M    | M    |
| CO3 | L    | M    | S    | M    | M    |
| CO4 | L    | M    | S    | M    | L    |
| CO5 | S    | M    | M    | M    | M    |

**M-MEDIUM** 

# **Mapping of COs with POs**

**S-STRONG** 

L-LOW

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | M   | L   | L   | L   | L   | M   |
| CO2 | M   | M   | M   | M   | M   | S   |
| CO3 | M   | L   | M   | S   | S   | S   |
| CO4 | M   | M   | M   | S   | M   | S   |
| CO5 | M   | M   | M   | S   | S   | S   |

#### Content

- 1. Program to find sum and average for ten numbers.
- 2. Program to generate prime numbers from 1 to n.
- 3. Program to find the roots of a quadratic equation
- 4. Program to find GCD of two integers using recursive function.
- 5. Program to find whether given matrix is symmetric or not.
- 6. Program to multiply two matrices.
- 7. Program to find a particular word in a string.
- 8. Program to count a particular letter in a given string.
- 9. Program to insert a sub string into the given main string from given position.
- 10. Program that uses functions to delete n Characters from a given position in a given string.
- 11. Program to find largest number using pointers.
- 12. Program to count number of vowels and consonants in a string using pointers.
- 13. Program to find sum and average of n numbers using pointers.
- 14. Program for dynamic memory allocation using malloc() function.
- 15. Program to add, subtract and multiply two complex numbers using structures to function.
- 16. Program to find Euler path
- 17. Program to copy contents from one file to another.
- 18. Program to count occurrences of all words in a file.
- 19. program to count occurrences of all words in a file
- 20. Program to find and replace a word in file.

### **Web Resources**

- 1. https://www.youtube.com/watch?v=LgDABwcKrTw
- 2. https://www.youtube.com/watch?v=bIytlrRR-Y8
- 3. https://www.youtube.com/watch?v=FoiLXsV-bnI
- 4. <a href="https://www.youtube.com/watch?v=wVDfRzBp8iE&list=PLfVsf4Bjg79BOmLYBRTwqClkGPiOWb7xj">https://www.youtube.com/watch?v=wVDfRzBp8iE&list=PLfVsf4Bjg79BOmLYBRTwqClkGPiOWb7xj</a>

## **Course Designer**

Mr.J.Prakash

(Re-Accredited with "A++" Grade by NAAC)

### DEPARTMENT OF COMPUTER SCIENCE

(For those who joined B.Sc., Data Science on or after June 2022)

| Course code | Course Title                      | Category | L | T | P | Credit |
|-------------|-----------------------------------|----------|---|---|---|--------|
| UDS22C21    | Data Structures And<br>Algorithms | Core 4   | 4 | - | - | 4      |

L-Lecture T- Tutorial P-Practical

| Year | Semester | Internal | Internal External |     |
|------|----------|----------|-------------------|-----|
| I    | II       | 25       | 75                | 100 |

### **Preamble**

This course provides the basic concepts of various data structures and comprehend various algorithms design strategies.

## **Course Outcomes**

On the completion of the course the student will be able to:

| #   | Course Outcome                                                                                                                                      | Expected Proficiency (%) | Expected<br>Attainment<br>(%) |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------|
| CO1 | Learn the fundamentals of Data Structures and working principles of Stack and Queue.                                                                | 65                       | 60                            |
| CO2 | Understand the working principles of Linked Lists.                                                                                                  | 65                       | 60                            |
| CO3 | Acquire the basic knowledge on binary tree and graph.                                                                                               | 65                       | 60                            |
| CO4 | Analyze how to break down problems into small pieces for program development applications and to utilize analytical skills using greedy algorithms. | 65                       | 60                            |
| CO5 | Understand Dynamic Programming, graph search and backtracking methods.                                                                              | 65                       | 60                            |

# **Mapping of COs with PSOs**

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----|------|------|------|------|------|
| CO1 | L    | L    | L    | M    | L    |
| CO2 | L    | L    | L    | M    | L    |
| CO3 | M    | M    | S    | M    | M    |
| CO4 | M    | M    | S    | M    | M    |
| CO5 | M    | M    | S    | M    | M    |

S-STRONG M-MEDIUM L-LOW

## **Mapping of COs with POs**

|     | PO1 | PO2     | PO3 | PO4 | PO5 | PO6 |
|-----|-----|---------|-----|-----|-----|-----|
| CO1 | L   | L       | L   | L   | -   | L   |
| CO2 | L   | ${f L}$ | L   | L   | -   | L   |
| CO3 | M   | S       | M   | M   | -   | M   |
| CO4 | M   | S       | M   | M   | -   | M   |
| CO5 | M   | S       | M   | M   | -   | M   |

S-STRONG M-MEDIUM L-LOW

#### **Blooms taxonomy**

|                 | C     | End of |          |
|-----------------|-------|--------|----------|
|                 | First | Second | Semester |
| Knowledge - K1  | 40%   | 40%    | 40%      |
| Understand - K2 | 40%   | 40%    | 40%      |
| Apply - K3      | 20%   | 20%    | 20%      |

### **Content**

UNIT I 12 Hours

INTRODUCTION: Data Structures - Data Structure Operations. STACK: Introduction - Stacks - Array Representations of Stacks - Arithmetic Expressions- Polish Notation. QUEUE: Array Representation of Queues - Circular Queue.

UNIT II 12 Hours

LINKED LISTS: Introduction - Linked Lists - Representation of Linked List in Memory - Traversing a Linked List - Searching a Linked List - Memory Allocation: Garbage Collection - Insertion into a Linked List - Deletion from a Linked List.

UNIT III 12 Hours

TREES: Introduction - Binary Trees - Representing Binary Tress in Memory - Traversing Binary Trees. GRAPHS: Terminology and Representations - Sequential Representation of Graphs - Adjacency Matrix, Path Matrix.

UNIT IV 12 Hours

INTRODUCTION - What is an Algorithm? - Algorithm Specification - Performance Analysis. Divide-And-Conquer: Binary Search - Merge Sort. GREEDY METHOD: Knapsack problem - Minimum Cost Spanning Tree - Prim's Algorithm - Kruskal Algorithm.

UNIT – V 12 Hours

DYNAMIC PROGRAMMING: all pairs shortest problem, travelling salesman problem. GRAPH SEARCH METHODS: Breadth first and depth first traversals. BACKTRACKING: The 8-Queens Problem - Graph coloring problem.

### **Text Books**

- 1. Seymour Lipschutz, "Data Structures", Tata McGraw Hill Publishing Company Limited, New Delhi, 2014.
- 2. Ellis Horowitz, Satraj Sahni and Sanguthevar Rajasekaran, Fundamentals of Computer Algorithms, Universities Press, Second Edition

## **Chapters (Relevant Topics only)**

Unit I : 1 (1.3, 1.4) & 6 (6.1-6.3, 6.6, 6.11,6.14) from Book1

Unit II : 5 (5.1 - 5.8) from Book 1

Unit III : 7(7.1-7.4) & 8(8.1-8.3) from Book 1

Unit IV : 1 (1.1 – 1.3), 3 (3.2, 3.4), 4 (4.2, 4.5) from Book 2 Unit V : 5 (5.3, 5.9), 6 (6.2) & 7 (7.2, 7.4) from Book 2


### **Reference Books:**

1. Tannenbaum, Data Structure Using C, Pearson Education, 2003.

2. Anany Levitin, —Introduction to Design and Analysis of Algorithms<sup>||</sup>, Pearson Education, 2012.

### **Course designer**

Mrs. K.Vennila



(Re-Accredited with "A++" Grade by NAAC)

### DEPARTMENT OF COMPUTER SCIENCE

(For those who joined B.Sc., Data Science on or after June 2022)

| Course code | Course Title       | Category | L | T | P | Credit |
|-------------|--------------------|----------|---|---|---|--------|
| UDS22C22    | Python Programming | Core 5   | 4 | - | - | 4      |

L – Lecture

T – Tutorial

P – Practical

| Year | Semester | Internal | External | Total |
|------|----------|----------|----------|-------|
| I    | II       | 25       | 75       | 100   |

## **Preamble**

This course is designed to learn basic concepts of python programming and also dealt with oops concepts and Data Science using Pandas, Numpy, Matplotlib.

## **Outcomes**

On the completion of the course the student will be able to

| #   | Course Outcome                                                                                                            | Expected<br>Proficiency<br>(%) | Expected<br>Attainment<br>(%) |
|-----|---------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------|
| CO1 | Realize the basic concepts of Python.                                                                                     | 65%                            | 60%                           |
| CO2 | Implement application using list, tuples, and dictionaries functions and learn to build user defined functions in python. | 65%                            | 60%                           |
| CO3 | Learn the Concept of OOPs, and implement data science in python using Pandas Module.                                      | 65%                            | 60%                           |
| CO4 | Acquire and apply knowledge to Numpy module and the use of Numpy module                                                   | 65%                            | 60%                           |
| CO5 | Incorporate Visualization concepts using Matplotlib                                                                       | 65%                            | 60%                           |

## **Mapping of COs with PSOs**

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----|------|------|------|------|------|
| CO1 | M    | L    | L    | M    | -    |
| CO2 | S    | M    | M    | M    | L    |
| CO3 | L    | M    | M    | S    | -    |
| CO4 | L    | L    | L    | M    | M    |
| CO5 | S    | S    | M    | S    | S    |

**S-STRONG** 

**M**-**MEDIUM** 

L-LOW

**Mapping of COs with POs** 

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | L   | M   | M   | L   | L   | -   |
| CO2 | M   | M   | M   | M   | M   | M   |

| CO3 | S | S | M | M | L | S |
|-----|---|---|---|---|---|---|
| CO4 | S | S | S | M | M | M |
| CO5 | S | M | M | S | S | S |

S-STRONG M-MEDIUM L-LOW

### **Blooms taxonomy**

| Ţ.              | C     | End of |          |
|-----------------|-------|--------|----------|
|                 | First | Second | Semester |
| Knowledge - K1  | 40%   | 40%    | 40%      |
| Understand - K2 | 40%   | 40%    | 40%      |
| Apply - K3      | 20%   | 20%    | 20%      |

### **Content**

UNIT-I: 11 HOURS

Introduction to Python: Python-Features of Python- Execution of a Python Program- Viewing the Byte Code- Python Virtual Machine (PVM) — Memory Management in Python. Data Types in Python: Numeric-Boolean-Sequences in python -Sets-Identifiers and Reserved words. Operators in Python: Membership and Identity Operators. Input and Output: Input Statements- Output Statements. Control Statements: The if statements- The if...else statements- The if..elif statements — The while Loop- The for Loop- Nested Loops- break, continue and pass statements.

UNIT-II: 12 HOURS

Lists, Tuples -Dictionaries. **Functions:** Defining a function – Calling a function – Returning Results from a function – Returning multiple values from a function – Pass by Object Reference – Recursive function- Anonymous or Lambdas.

UNIT-III: 17 HOURS

Classes and Objects: Creating a class – The self variable – Constructors – Types of Methods – Inner Classes. Inheritance and Polymorphism: The super() method – Types of Inheritance – Polymorphism – Operator overloading – Method Overloading – Method Overriding. Data Science using Python: Data Frame- Creating Data Frame from an Excel Spreadsheet, .csv files- Data Visualization- Bar Graph- Creating a Pie Chart- Creating Line Graph.

UNIT – IV 10 HOURS

**Introduction to Numpy:** The Basic Numpy Arrays – Computation on Numpy Arrays: Universal Functions – Aggregations: Min, Max and Everything in Between – Computation on Arrays: Broadcasting – Sorting Arrays – Structured Data: Numpy's structured Arrays.

UNIT – V 10 HOURS

**Visualization with Matplotlib:** General Matplotlib Tips – Simple Line Plots – Simple Scatter Plots – Visualizing Errors – Histograms, Binning and Density - Customizing plot Legends – Customizing Colorbars – Multiple Subplots – T ee Dimensional Plotting in Matplotlib – Geographic Data with Basemap.

### **Text Books**

 Title: Core Python Programming Author: Dr. R.Nageswara Rao Publisher: Dreamtech Press

Edition: second

2. Jake Vandeplus, December 2016, **Python Data Science Handbook: Essential tools for working with data** 1<sup>st</sup> Edition, O'Reilly.

## **Chapters (Relevant Topics Only)**

Unit-I : Chapter 1, 3,4,5,6 from Book 1
Unit-II : Chapter 10, 11, 19 from Book 1
Unit-III : Chapter 16, 13, 14 from Book 1

Unit-IV: Chapter 2 from Book 2 Unit-V: Chapter 4 from Book 2

### **Reference Books**

- 6. E. Balagurusamy, "Problem Solving and Python Programming" McGraw Hill Education 2018
- 7. Wes McKinney, October 2012, **Python for Data Analysis** 1<sup>st</sup> Edition, O'Reilly

## **Course Designer**

Mr. R.Chandrasekar



(Re-Accredited with "A++" Grade by NAAC)

### DEPARTMENT OF COMPUTER SCIENCE

(For those who joined B.Sc., Data Science on or after June 2022)

| Course<br>Code | Course Title               | Category | L | T | P | Credit |
|----------------|----------------------------|----------|---|---|---|--------|
| UMA22GE21D     | Probability and Statistics | Allied 2 | 5 | - | - | 5      |

L – Lecture

T – Tutorial

P - Practical

| Year | Semester | Internal | External | Total |
|------|----------|----------|----------|-------|
| I    | II       | 25       | 75       | 100   |

### **Preamble**

This course is a foundation for probability and statistical ideas in exploratory data analysis and provides a concise and clear description of various statistical methods used for analysis.

## **Course Outcomes**

On the completion of the course the student will be able to

| #               | Course Outcome                                                                            | Expected<br>Proficiency<br>(%) | Expected Attainment (%) |
|-----------------|-------------------------------------------------------------------------------------------|--------------------------------|-------------------------|
| CO1             | Explain the basic concept of probability and random experiment.                           | 70                             | 65                      |
| CO <sub>2</sub> | Expose to the concepts of Random variable.                                                | 75                             | 70                      |
| CO <sub>3</sub> | Demonstrate functions of random variable.                                                 | 75                             | 65                      |
| CO4             | Analyze correlation and regression and estimate standard error.                           | 80                             | 75                      |
| CO5             | Relate and analyze the knowledge of using various distributions for statistical analysis. | 85                             | 75                      |

## **Mapping of COs with PSOs**

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----|------|------|------|------|------|
| CO1 | S    | -    | M    | -    | M    |
| CO2 | M    | S    | -    | -    | -    |
| CO3 | S    | -    | M    | -    | -    |
| CO4 | -    | S    | -    | M    | S    |
| CO5 | S    | M    | -    | S    | M    |

**S-STRONG** 

M-MEDIUM

L-LOW

### **Mapping of COs with POs**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | S   | M   | S   | M   | -   | -   |
| CO2 | -   | S   | -   | -   | M   | -   |
| CO3 | -   | -   | S   | -   | M   | M   |
| CO4 | -   | M   | -   | -   | S   | -   |
| CO5 | S   | M   | M   | -   | -   | M   |

S-STRONG M-MEDIUM L-LOW

### **Blooms taxonomy**

|                 | C     | End of |          |
|-----------------|-------|--------|----------|
|                 | First | Second | Semester |
| Knowledge - K1  | 40%   | 40%    | 40%      |
| Understand - K2 | 40%   | 40%    | 40%      |
| Apply - K3      | 20%   | 20%    | 20%      |

### **Content**

Unit I (15 Hours)

Probability Theory: random experiment – Axiomatic definition of probability - Conditional probability – Independent events – theorem of total probability – Bayes' Theorem of Theorem probability of causes.

Unit II (15 Hours)

Random Variables: Discrete random variable – Probability function – Continuous random variable – Cumulative distribution function - Special distribution – Discrete distributions – Continuous distributions

Unit III (12 Hours)

Functions of Random Variables: Function of one random variable – One functions of two random variables – Two functions of two random variables.

Unit IV (15 Hours)

Statistical Averages: Linear correlation – Correlation coefficient – Properties of correlation coefficient – Rank correlation coefficient – Regression – Equations of the regression line of y on X – Standard error of estimate of Y

Unit V (18 Hours)

Some Special Probability Distributions: Introduction – Special discrete distributions - Binomial Distribution – Poisson Distribution – Special continuous distributions – Uniform distribution - Normal distribution.

### **Text Books:**

T. Veerarajan, "Probability, Statistics and Random Processes with Queueing Theory and Queueing Networks", McGraw – Hill Education (India) Private Limited, New Delhi, 4th edition 2015.

# **Chapters (Relevant Topics Only)**

Unit I : I (1.1, 1.2, 1.4-1.6, 1.14, 1.19, 1.20, 1.23)

Unit II : II (2.1 – 2.5, 2.20), Unit III : III (3.1 – 3.6, 3.23)


Unit IV : IV (4.17 – 4.19, 4.21- 4.47) Unit V : V (5.1 - 5.4, 5.36, 5.43, 5.54)

### **References:**

- 1. Vittal. P.R., 2013, Mathematical Statistics, Margham Publications, Chennai.
- 2. Gupta. S.C. and Kapoor. V.K., 2007, Fundamentals of Mathematical Statistics, Eleventh edition, Sultan Chand & sons, New Delhi.
- 3. Gupta. S.C. and Kapoor. V.K., 2015, Elements of Mathematical Statistics, Third Edition, Sultan Chand & Sons, Educational Publishers, New Delhi.

# **Course Designers:**

- 1. Mrs. V. Kanchana Devi.
- 2. Dr. D. Murugeswari.



(Re-Accredited with "A++" Grade by NAAC)

### DEPARTMENT OF COMPUTER SCIENCE

(For those who joined B.Sc., Data Science on or after June 2022)

| Course code | Course Title                       | Category   | L | T | P | Credit |
|-------------|------------------------------------|------------|---|---|---|--------|
| UDS22CL21   | Data Structures and Algorithms Lab | Core Lab 2 | - | - | 4 | 2      |

L – Lecture T – Tutorial P – Practical

| Year | Semester | Internal | External | Total |
|------|----------|----------|----------|-------|
| I    | II       | 40       | 60       | 100   |

### **Preamble**

This course facilitates the students in understanding the various data structures and algorithms through implementation.

## **Course Outcomes**

On the completion of the course the student will be able to

| #   | Course Outcome                                    | Expected    | Expected   |
|-----|---------------------------------------------------|-------------|------------|
|     |                                                   | Proficiency | Attainment |
|     |                                                   | (%)         | (%)        |
| CO1 | Implement stack and Queue data structures         | 70          | 65         |
| CO2 | Implement linked list data structure.             | 70          | 65         |
| CO3 | Implement divide and conquer approach.            | 70          | 65         |
| CO4 | Implement greedy method and graph search methods. | 70          | 65         |
| CO5 | Implement graph search method and backtracking.   | 70          | 65         |

## **Mapping of COs with PSOs**

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----|------|------|------|------|------|
| CO1 | L    | L    | L    | M    | L    |
| CO2 | L    | L    | L    | M    | L    |
| CO3 | M    | M    | S    | M    | M    |
| CO4 | M    | M    | S    | M    | M    |
| CO5 | M    | M    | S    | M    | M    |

S-STRONG M-MEDIUM L-LOW

# **Mapping of COs with POs**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | L   | L   | L   | L   | -   | L   |
| CO2 | L   | L   | L   | L   | -   | L   |
| CO3 | M   | S   | M   | M   | -   | M   |
| CO4 | M   | S   | M   | M   | -   | M   |
| CO5 | M   | S   | M   | M   | -   | M   |

S-STRONG M-MEDIUM L-LOW

### **Content**

- 1. Write a program to implement Stack implementation using array
- 2. Write a program to implement Queue implementation using array
- 3. Write a program to implement Circular Queue implementation using array.
- 4. Write a program to implement Single linked list
- 5. Write a program to implement Tree Traversal
- 6. Write a program to implement Binary Search
- 7. Write a program to implement Merge Sort
- 8. Write a program to implement Prim's Algorithm.
- 9. Write a program to implement Kruskal Algorithm.
- 10. Write a program to implement BFS method
- 11. Write a program to implement DFS method.
- 12. Write a program to implement 8- Queens Problem.

## **Web Resources**

- 1. https://www.programiz.com/c-programming
- 2. https://www.tutorialspoint.com/data\_structures\_algorithms

### Course designer

Mrs. K.Vennila

(Re-Accredited with "A++" Grade by NAAC)

### DEPARTMENT OF COMPUTER SCIENCE

(For those who joined B.Sc., Data Science on or after June 2022)

| Course code | Course Title              | Category   | L | T | P | Credit |
|-------------|---------------------------|------------|---|---|---|--------|
| UDS22CL22   | Python Programming<br>Lab | Core Lab 3 | - | - | 3 | 2      |

L – Lecture

T – Tutorial

P – Practical

| Year | Semester | Internal | External | Total |
|------|----------|----------|----------|-------|
| I    | II       | 40       | 60       | 100   |

## **Preamble**

This course is designed to learn basic concepts of python programming and also dealt with oops concepts and Data Science using Pandas, Numpy, Matplotlib.

### **Course Outcomes**

On the completion of the course the student will be able to

| #   | Course Outcome                                                                                                            | Expected Proficiency | Expected Attainment |
|-----|---------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------|
| CO1 | Realize the basic concepts of Python.                                                                                     | 70%                  | 65%                 |
| CO2 | Implement application using list, tuples, and dictionaries functions and learn to build user defined functions in python. | 70%                  | 65%                 |
| CO3 | Learn the Concept of OOPs, and implement data science in python using Pandas Module.                                      | 70%                  | 65%                 |
| CO4 | Acquire and apply knowledge to Numpy module and the use of Numpy module                                                   | 70%                  | 65%                 |
| CO5 | Incorporate Visualization concepts using Matplotlib                                                                       | 70%                  | 65%                 |

# **Mapping of COs with PSOs**

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----|------|------|------|------|------|
| CO1 | M    | L    | L    | M    | -    |
| CO2 | S    | M    | M    | M    | L    |
| CO3 | L    | M    | M    | S    | -    |
| CO4 | L    | L    | L    | M    | M    |
| CO5 | S    | S    | M    | S    | S    |

**S-STRONG** 

M – MEDIUM

L-LOW

## **Mapping of COs with POs**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | L   | M   | M   | L   | L   | -   |
| CO2 | M   | M   | M   | M   | M   | M   |
| CO3 | S   | S   | M   | M   | L   | S   |
| CO4 | S   | S   | S   | M   | M   | M   |
| CO5 | S   | M   | M   | S   | S   | S   |

S-STRONG M -MEDIUM L-LOW

#### **Content**

- 1. Program to demonstrate membership and Identity operators
- 2. Program to demonstrate Control statements.
- 3. Program to demonstrate built-in and user defined functions
- 4. Program to demonstrate list and its operations and functions.
- 5. Program to demonstrate Set operations
- 6. Program to demonstrate tuple and its operations and functions
- 7. Program to demonstrate dictionaries and its operations and functions.
- 8. Program to demonstrate Classes and Objects.
- 9. Program to demonstrate Constructors.
- 10. Program to demonstrate inner classes.
- 11. Program to demonstrate Single and Multiple inheritance.
- 12. Program to demonstrate Operator Overloading.
- 13. Program to demonstrate Method Overloading.
- 14. Program to demonstrate Method Overriding.
- 15. Program to demonstrate Arrays using Numpy
- 16. Program to demonstrate list and its operations and functions using Numpy.
- 17. Program to demonstrate Universal functions on Numpy Arrays.
- 18. Program to demonstrate Aggregations.
- 19. Program to demonstrate Array Broadcasting.
- 20. Program to demonstrate Exception Handling
- 21. Program to demonstrate Sorting arrays, K-Nearest Neighbors.
- 22. Program to demonstrate Structured Arrays.
- 23. Program to demonstrate Matplotlib.
- 24. Program to demonstrate Line plot, Scatter plot.
- 25. Program to demonstrate Histograms, Binnings and Density.
- 26. Program to demonstrate data frame and its functions.
- 27. Program to demonstrate Bar graph, Line graph and Pie Chart.

### **Course Designer**

Mr.R.Chandrasekar