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Synopsis

A STUDY ON DOMINATING SETS

Graph Theory is an important branch of mathematics. It has grown rapidly

in recent times with a lot of research activities because of its applications in

diverse fields which include Computer science (Algorithms and computation),

Biochemistry (Genomics), Electrical Engineering (Communication networks

and coding theory) and Operations research. One of the main emerging con-

cepts in Graph theory is Domination in graphs. Domination arises in facility

location problem and has a variety of applications in fields such as Linear Alge-

bra and Optimization, Online Social Networks, Cloud Architecture for Video

Distribution Services, Computer Communication Networks and Wireless Sen-

sor Networks.

Let G = (V,E) be a simple graph. A set D ⊆ V is a dominating set of

G if every vertex in V − D is adjacent to a vertex in D. The domination

number of G, denoted by γ(G), is the minimum cardinality of a dominating

set.

A thorough study of domination appears in [9, 10]. Many domination pa-

rameters are introduced by imposing additional constraints on the dominating

set D or on the dominated set V −D or on the method by which vertices in

V −D are dominated.

In our thesis we deal with two domination parameters : Restrained domi-

nation and Antipodal domination. Restrained domination was already intro-

duced by Domke et al.[5] in 1999, whereas the antipodal domination is a new

parameter introduced by us.

Restrained domination is defined by imposing a condition on the domi-

nated set. A set S ⊆ V is a restrained dominating set if every vertex not

in S is adjacent to a vertex in S and to a vertex in V - S. The restrained

domination number of G, denoted by γr(G), is the smallest cardinality of

a restrained dominating set of G. By the definition γ(G) ≤ γr(G).

An application of the concept of restrained domination is that of prisoners

and guards[5]. Each vertex not in the restrained dominating set corresponds

to a position of a prisoner, and every vertex in the restrained dominating set

corresponds to a position of a guard. Note that each prisoner’s position is

observed by a guard’s position (for effective security) while each prisoner’s
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position is seen from at least one other prisoner’s position (to protect the

rights of prisoners). To be cost effective, it is desirable to place as few guards

as possible.

We have introduced Antipodal domination by imposing a condition on the

dominating set. A dominating set S ⊆ V is said to be an Antipodal Dom-

inating Set(ADS) of a connected graph G if there exist vertices x, y ∈ S

such that d(x, y) = diam(G). The minimum cardinality of an ADS is called

the Antipodal Domination Number(ADN), and is denoted by γap(G).

Any country is under threat and faces a lot of challenges from internal and

external threats, which calls for a robust defence mechanism. To manage ex-

ternal security threats, border forces are required to monitor the international

borders against intrusion. To manage internal security threats, internal secu-

rity forces are needed. Besides law and order, their main duties are rescue and

relief operations at the time of natural calamities, participating in UN peace

keeping mission, etc. To minimize the cost and maximize the benefits, the

border forces are to be deployed at the farthest places and any country needs

at least two border forces; moreover, the number of internal security forces is

to be minimized but at the same time, they must be deployed at close range

of unsecured places.

We can model this situation using a graph with the vertices representing

the regions of the country and two vertices are adjacent if the corresponding

regions are nearer. Now the problem of minimizing the number of border forces

and internal security forces is equivalent to finding an antipodal dominating

set with the minimum cardinality.

In our thesis, we have also introduced a new polynomial on graphs. Graph

polynomials, provide a powerful tool in the area of graphical enumeration. As

such, it encodes information about the graph, and enables algebraic methods

for extracting this information. The first graph polynomial studied in litera-

ture is the chromatic polynomial, which counts the number of proper colorings

of graphs (a coloring of the vertices such that adjacent vertices do not have

the same color). It was defined by G.D. Birkhoff [3] to attack the famous four

color problem in 1912.

In the literature, there are many domination related polynomials such as

domination polynomial[1], total domination polynomial, connected domina-

tion polynomial, independent domination polynomial, the bipartition polyno-
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mial [15], pendant domination polynomial [17], Global bipartite domination

polynomial[13] and Edge connected domination polynomial[11].

In our thesis, we introduce and initiate the study of restrained domination

polynomial of graphs.

Summary of our Results

We present our results in five chapters. Chapters 2 and 3 deal with an-

tipodal domination, Chapters 4 and 5 deal with restrained domination and

Chapter 6 deals with restrained domination polynomial.

All our graphs are simple and undirected. Throughout our thesis, n and

m denote the order and the size of the graph respectively.

Chapter 2 : Antipodal Domination in Graphs

In this chapter, we introduce a new domination parameter called antipodal

domination by imposing condition on the dominating set S.

Definition. A dominating set S ⊆ V is said to be an Antipodal Dominat-

ing Set(ADS) of a connected graph G, if there exist vertices x, y ∈ S such

that d(x, y) = diam(G). The minimum cardinality of an ADS is called the

Antipodal Domination Number(ADN), and is denoted by γap(G).

We can easily extend this definition for disconnected graphs as follows :

Let G be a disconnected graph with the components G1, G2, ..., Gk. A set S is

said to be an ADS of G if S can be written as S =
k⋃
i=1

Si, where each Si is an

ADS of Gi. Now γap(G) =
k∑
i=1

γap(Gi).

Our first result deals with the relation between γ and γap.

Theorem 1. For any graph G with k(≥ 1) components,

γ(G) ≤ γap(G) ≤ γ(G) + 2k and these bounds are sharp.

Next we determine the ADN for standard graphs such as complete graphs,

paths, cycles, complete bipartite graphs, wheels, generalized wheels, double

stars and wounded spiders.

Also, we determine ADN of Jahangir graphs.

For t ≥ 3, a Jahangir graph[2] Js,t is the graph on st+ 1 vertices, consisting

of a cycle Cst : u1u2...ustu1, with an additional vertex v that is adjacent to t

vertices us, u2s, ..., uts. Note that V (Js,t) = {u1, u2, ..., ust, v} and

E(Js,t) = {vujs | 1 ≤ j ≤ t} ∪ {uiui+1 | 1 ≤ i ≤ st− 1} ∪ {ustu1}.
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Theorem 2. γap(J2,t) =


⌈
t
2

⌉
if t = 3⌈

t
2

⌉
+ 1 if t ∈ {5, 6, 7, 9}.

Theorem 3. γap(J2,t) =
⌈
t
2

⌉
+ 2 if t ≥ 10 or t = 8.

[These results are published in the Proceedings of the National

Conference on Recent Developments on Emerging Fields in Pure

and Applied Mathematics(2015), 65-72, ISBN No. : 978-93-83209-

02-6.]

Moreover we study antipodal domination for operations on graphs.

Theorem 4. For any two graphs G1 and G2, γap(G1 + G2) ≤ 3. Strict in-

equality holds if one of the following holds:

(i) Both G1 and G2 are complete

(ii) i(G1) = 2 or i(G2) = 2 (where i(G) denotes the independent domination

number of G).

Theorem 5. For any non-trivial graph H of order n, γap(H ◦K1) = n.

Theorem 6. For 2 ≤ s ≤ t, γap(Ks ×Kt) = s.

Theorem 7. γap(Ks[Kt]) = γap(Ks �Kt) =

1 if s = t = 1

2 otherwise.

Theorem 8. γap(Ks ⊗Kt) =


3 if min(s, t) ≥ 3

st if min(s, t) = 1 or s = t = 2

2 otherwise.

Theorem 9. For any k ≥ 3, γap(P2 × Pk) =


k+3
2

if k ≡ 1(mod 4)⌈
k+1
2

⌉
otherwise.

Theorem 10. For k ≥ 2, γap(P2 � Pk) =
⌈
k+2
3

⌉
.

Theorem 11. For k ≥ 2, γap(P2[Pk]) =

2 if k ≤ 6

3 otherwise.

Theorem 12. For k ≥ 2, γap(P2 ⊗ Pk) = 2(
⌈
k−1
3

⌉
+ 1).
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Chapter 3 : Bounds of Antipodal Domination

In this chapter we derive bounds for γap.

First we derive a bound in terms of order.

Theorem 1. For any non-trivial connected graph G of order n,

γap(G) ≤ n
2

+ 1.

Using the above bound, we characterize the connected graphs with

γap(G) = n, n− 1 and n− 2.

Theorem 2. Let G be a connected graph of order n. Then

(i) γap(G) = n iff G is K2 or K1.

(ii) γap(G) = n− 1 iff G is K3, P3 or K1,3.

Theorem 3. Let G = (V,E) be a connected graph of order n. Then

γap(G) = n−2 iffG ∈ A, where A = {K4, K4−e,K1,3+e, C4, P4, P5, D1,2, D2,2, K1,4,

G1, G2, G3}(Refer Fig.1 for G1, G2, G3).

\
\
\
\\

t
t t tt

t t
t tt

t
t t t

t

G1 G2 G3
Fig.1

Next, we derive a bound for trees and characterize the trees that attain

this bound.

Theorem 4. Let T be a non-trivial tree of order n with l pendant vertices.

Then γap(T ) ≤ n− l + 2.

Theorem 5. Let T be a tree of order n ≥ 3, with l pendant vertices. Then

γap(T ) = n− l + 2 iff

(i) Every vertex of T is either a pendant vertex or a support vertex and

(ii)For every pair of vertices x and y with d(x, y) = diam(T ), d(z) ≥ 3 for

every z ∈ N(x) ∪N(y).

[Theorems 1 -5 are published in Mathematical Sciences International

Research Journal:Volume 5, Issue 2 (2016), 27-30, ISSN 2278-8697,

ISBN 978-93-84124-93-9]

Next, we study bounds in terms of maximum degree, minimum degree and

order.
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Theorem 6. Let G be a connected graph with ∆(G) ≤ n − 2. Then

γap(G) ≤ n−∆(G) + 1. Moreover this bound is sharp.

Theorem 7. Let G be any non-trivial graph with ∆(G) = n − 1. Then

γap(G) ≤ 3. Equality holds iff β(G) ≥ 3, where β(G) denotes the indepen-

dence number of G.

Theorem 8. Let G be a graph with diam(G) = 2. Then γap(G) ≤ δ(G) + 2.

Furthermore equality holds iff δ(G) = 1 and d(w) ≤ n−3, for all w ∈ V −N [v],

where v is a vertex of minimum degree.

Next, we study graph complements and derive a Nordhaus-Gaddum type

bound.

Theorem 9. If diam(G) ≥ 3, then γap(G) ≤ 4.

Theorem 10. If G is disconnected graph, then γap(G) ≤ 3.

Theorem 11. If G is a connected graph of order n, then

4 ≤ γap(G) + γap(G) ≤ n+ 2.

Chapter 4 : Restrained domination number of graphs

In the literature, bounds of γr are determined in terms of order[8], max-

imum degree[4] and minimum degree[8] for graphs with δ(G) ≥ 2. We have

derived bound in terms of clique number ω(G) and this bound can be applied

for graphs with δ(G) = 1 also.

Theorem 1. For any graph G with ω(G) ≥ 3, γr(G) ≤ n− ω(G) + 1. More-

over equality holds iff G ∈ G or G = G1 ∪ G2, where G is the collection of

graphs obtained by adding zero or more leaves to at most k − 1 vertices of

Kk, k ≥ 3, G1 ∈ G and G2 is a galaxy.

Next, we deal with graph complements. Nirmala Vasantha [16] has proved

that γr(G) ≤ 3, for connected graphs G with at least two pendant vertices.

We deal with the graphs having exactly one pendant vertex.

Theorem 2. Let G be a connected graph with exactly one pendant vertex

and ∆(G) ≤ n− 3 . Then γr(G) = 2.

Theorem 3. Let G be a graph of order n ≥ 4 having exactly one pendant

vertex and ∆(G) = n− 1. Then

(i) 2 ≤ γr(G) ≤ n.

(ii) γr(G) = 2 iff G ∼= K1 + (K1 ∪ H), where H is a graph with

∆(H) ≤ n− 4.

(iii) γr(G) = n iff G is the graph obtained from Kn−1, by attaching a
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pendant vertex to exactly one vertex of Kn−1.

Theorem 4. If G is a connected graph of order n ≥ 5 having exactly one

pendant vertex and ∆(G) = n−2, then 2 ≤ γr(G) ≤ n−2. Both these bounds

are sharp.

Theorem 5. Let G be a connected graph of order n ≥ 5, having exactly

one pendant vertex and ∆(G) = n − 2. Then γr(G) = n − 2 iff G is a graph

obtained from P4 by attaching one or more leaves to exactly one stem of P4

or it can be obtained from C3 by attaching exactly one pendant vertex to a

vertex of C3 and two or more pendant vertices to another vertex of C3.

Next, we deal with some characterizations. In the literature, the charac-

terization of graphs with γr(G) = n, n− 2, n− 3,∆ are studied in [5, 18].

We have characterized the trees with γr(T ) = n− 4,∆ + 1. These charac-

terizations hold for some families of trees. We use the following notation for

these families of trees.

Notation

In all the following families, we use a phrase ’attaching a stem’, which means

attaching a stem with one or more leaves.

1. F1 denotes the family of trees obtained from P9 or P8 by attaching zero

or more leaves to the center(s) or the support vertices of the path.

2. F2 denotes the family of trees obtained from P5, P7, by

attaching two stems to the center and zero or more leaves to the

support vertices of the path; and the trees obtained from P6, by attaching

zero or more leaves to the support vertices and by either attaching two

stems to one of the center or attaching one stem to each of the centers.

3. F3 denotes the family of trees obtained from P5, P6, P7, by attaching

one stem to exactly one center, one or more leaves to exactly one center,

and zero or more leaves to the support vertices of the path.

4. F4 denotes the family of trees obtained from P7 by attaching exactly one

stem and zero leaves to the center, and zero or more leaves to all the

other internal vertices of the path such that at least one neighbour of

the center is of degree 2.

5. F5 denotes the family of trees obtained from P7 by attaching zero or
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more leaves to all the internal vertices of the path such that the center

or at least one neighbour of the center (in the path) is of degree 2.

6. F6 denotes the family of trees obtained from P6 by attaching one or more

leaves to both the centers, and zero or more leaves to the support vertices

of the path.

7. T1 denotes the family of trees obtained from wounded spiders with ∆ ≥ 3,

by attaching exactly one leaf to a vertex of degree two.

8. T2 denotes the family of trees obtained from wounded spiders with ∆ ≥ 3,

by attaching exactly one stem to a vertex of degree two, where the new

attached stem has exactly one leaf.

9. T3 denotes the family of trees obtained from stars by subdividing each

edge zero time or twice.

10. T4 denotes the family of trees obtained from stars by subdividing exactly

one edge thrice, one edge once and the remaining edges zero time or once.

11. T5 denotes the family of trees obtained from stars by subdividing each

edge exactly once.

12. T6 denotes the family of trees obtained from stars by subdividing exactly

one edge four times, one edge zero time and the remaining edges zero

time or once.

13. T7 denotes the family of trees obtained from stars by subdividing exactly

one edge twice, one edge zero time and the remaining edges zero time or

once.

Theorem 6. If T is a tree, γr(T ) = n− 4 iff T ∈
5⋃
i=1

Fi.

Theorem 7. For any tree T with n ≥ 4, γr(T ) = ∆ + 1 iff T ∈
7⋃
i=1

Ti.

[Theorems 6 and 7 are published in International Journal of

Applied Engineering Research, Volume 14, Number 3 (2019), ISSN

0973-4562.]

Chapter 5 : Restrained domination number of Jump graphs

In [6, 7], the jump distances and jump graphs Jk(G), (1 ≤ k ≤ m) are

9



defined. J1(G) is referred as the jump graph of G and it is the graph whose

vertices are the edges of G and two vertices of J(G) are adjacent iff the corre-

sponding edges of G are non-adjacent, and it is denoted by J(G). Note that

J(G) is defined only for non-empty graphs.

It is clear that, if G is a graph of size m, then γr(J(G)) ≤ m.

In this chapter, first we determine the RDN for jump graph of standard

graphs such as paths, cycles, complete bipartite graphs, stars, double stars

and fans.

The first general result deals with trees.

Theorem 1.Let T be a tree.

(i) If diam(T ) = 4, then 2 ≤ γr(J(T )) ≤ 3.

(ii) If diam(T ) ≥ 5, then γr(J(T )) = 2.

Note that stars and double stars are the trees of diameter less than or equal

to 3 and are dealt already.

Next, we have derived results on the structural properties of jump graphs.

Using these properties, we characterize the graphs with γr(J(G)) = 1,m.

Theorem 2. γr(J(G)) = 1 iff G ∼= K2 ∪ G1, where G1 is a graph in which

each edge of G1 is not adjacent to at least one edge of G1.

Theorem 3. γr(J(G)) = m iff

G ∈ {K2 ∪K3, K2 ∪K1,k, K3, K1,k, Dk,1, K1 + (K2 ∪Kk)}.
The next two results deal with γr(G) and γr(J(G)).

Theorem 4. (i) 3 ≤ γr(G) + γr(J(G)) ≤ n+m.

(ii) 2 ≤ γr(G).γr(J(G)) ≤ nm.

Furthermore these bounds are best possible.

Theorem 5. γr(G) + γr(J(G)) = n+m iff G = K1,n−1 or K2 ∪K1,n−3.

Next, we derive a bound in terms of edge independence number and char-

acterize the graphs that attain this bound.

Theorem 6. Let G be a connected graph with β1(G) ≥ 3. Then

γr(J(G)) ≤ m − β1(G) + 1, where β1(G) is the edge independence number

of G. Moreover equality holds iff J(G) ∈ G∗, where G∗ = C ∪ {Kk | k ≥ 4}
and C is the family of graphs obtained from K3 by adding at most two leaves

to at most two vertices of K3.

Next, we derive a Nordhaus-Gaddum type bound.
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Theorem 7. Let G be a non-empty graph. Then

(i) 2 ≤ γr(J(G)) + γr(J(G)) ≤ m + 2, except for the graphs G � P3 ∪K2

and G � P4. Furthermore these bounds are best possible.

(ii) γr(J(G)) + γr(J(G)) = 2m, when G ∼= P3 ∪K2 or G ∼= P4.

Chapter 6 : Restrained domination polynomials

In this chapter, we introduce restrained domination polynomial of graphs.

Definition. Let G be a graph of order n and size m. Let dr(G, i) be the num-

ber of restrained dominating sets with cardinality i. Then the restrained

domination polynomial(RDP) of G, denoted by Dr(G, x) is defined as

Dr(G, x) =
n∑

i=γr(G)

dr(G, i)x
i.

Theorem 1. If a graph G consists of k components G1, G2, ..., Gk(k ≥ 2),

then Dr(G, x) =
k∏
i=1

Dr(Gi, x).

Theorem 2. For all n1, n2 ≥ 2,

Dr(Kn1,n2 , x) = xn1+n2 + [(1 + x)n1 − (1 + xn1)][(1 + x)n2 − (1 + xn2)].

Theorem 3. Dr(Kn ◦K1, x) = xn[(1 + x)n]− nx2n−1.

Next, we have determined dr(G, i) for paths, cycles and the product of

graphs; and using these results, we determine the RDP for these graphs.

Theorem 4. For n ≥ 6, Dr(Pn, x) = x2[Dr(Pn−2, x) + 2Dr(Pn−4, x) +

Dr(Pn−6, x)], where we set Dr(P0, x) = 0.

Theorem 5. Dr(Cn, x) = 3Dr(Pn−2, x) +Dr(Pn, x).

Theorem 6. For k ≥ 3,

Dr(K2 × Kk, x) =
k−1∑
t=2

[
t−1∑

t1=b t
2c+1

kCt1 kCt−t1 ]2x
t +

2k−4∑
t=k

[ kCt−k + k (k−1)Ct−k+1

+
k−2∑

t1=b t
2c+1

kCt1 kCt−t1 ]2x
t +

2k−4∑
t=2
t even

(kC t
2
)2xt

+ [ kCk−3 + k (k−1)Ck−2]2x
2k−3 + k2x2k−2 + x2k.

Theorem 7. For k ≥ 3,

Dr(K2⊗Kk, x) = kx2+
k−1∑
t=3

[(t−1) kCt−1+
t−2∑

t1=b t
2c+1

kCt1 kCt−t1 ]2x
t+

2k−4∑
t=k

[k k−1Ct−k

+
k−2∑

t1=b t
2c+1

kCt1 kCt−t1 ]2x
t+

2k−4∑
t=4
t even

(kC t
2
)2xt+2k k−1Ck−3x

2k−3

+ k(k − 1)x2k−2 + x2k.

Theorem 8. Dr(K2[Kk]) = Dr(K2 �Kk) = (1 + x)2k − (1 + 2kx2k−1).
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Conclusion

In our thesis, we have studied antipodal domination, restrained domination

and restrained domination polynomial.

In Chapter 2, we have introduced a new type of domination called an-

tipodal domination by imposing a condition on the dominating set and have

determined the antipodal domination number for standard graphs, Jahangir

graphs, and graphs that are obtained from various graph operations.

In Chapter 3, we have derived bounds for antipodal domination number

in terms of order, maximum degree and minimum degree. Also we have char-

acterized the graphs with γap(G) = n, n − 1, n − 2. Next we have derived a

Nordhaus-Gaddum type bound.

In Chapter 4, we have derived a bound for the restrained domination in

terms of clique number. Next we have determined the RDN for graph com-

plement. Moreover we have characterized the trees with γr(T ) = n− 4,∆ + 1.

In Chapter 5, we have determined the restrained domination number for

Jump Graphs of standard graphs and trees. We have also derived the struc-

tural properties of jump graphs, and using these structural properties, we have

characterized the graphs with γr(J(G)) = 1,m. Moreover we have derived a

bound for RDN of jump graphs.

In Chapter 6, we have introduced restrained domination polynomial and

have determined the restrained domination polynomial for paths, cycles and

various products of K2 with Kk.
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